



## NEUTRINO PROPERTIES FROM COSMOLOGY

MASSIMILIANO LATTANZI INFN, sezione di Ferrara NOW 2024 Otranto, Sept. 7<sup>th</sup>, 2024

### **CMB OBSERVATIONS**



Planck 2018

M. LATTANZI

NOW 2024

### **CMB OBSERVATIONS**





Temperature anisotropies Measured by Planck down to the cosmic variance limit

Polarization anisotropies (two modes: E and B) *Complete characterization is the main target of next-gen experiments Primordial B-modes are a smoking gun for inflation* 

Lensing anisotropies *CMB window to structure formation and the late Universe Also a target for next-gen experiments Relevant for e.g. neutrino masses* 

Planck 2018

#### M. LATTANZI

### TIMELINE OF CMB EXPERIMENTS



Snowmass2021 Cosmic Frontier: CMB Measurements White Paper, arXiV: 2203.07638

(with some modifications to account for changes in schedule)

#### M. LATTANZI

#### NOW 2024

## SIMONS OBSERVATORY



- Ground-based CMB experiment sited in Cerro Toco in the Atacama Desert in Chile
- 5-yr obs campaign
- 3 Small Aperture (0.4m) Telescopes (SATs) for 'r science'
- 1 Large Aperture (6m) Telescope (LAT) for smallscale (arcmin) science
- > 60k TES detectors
- 10x sensitivity and 5x resolution wrt Planck
- 6 freq. bands from 27 to 280 GHz





#### M. LATTANZI

## LiteBIRD Overview









#### Sep 6th, 2024

#### NOW 2024

### CMB STAGE-4

- Definitive ground-based CMB experiment
- Observing from Atacama Desert and South Pole
- Joint NSF and DOE project
- 7-years obs campaign
- Ultra-deep survey (3% of the sky): 18 SATs + 1
   LAT at the South Pole
- Deep and wide survey (60% of the sky): 2 LATs in Chile
- 8 frequency bands between 20 and 280 GHz
- ~ 550K detectors



CMB-S4 Science Book (arXiv: 1610:02743)

See Snowmass 2021 CMB-S4 White Paper arXiv:2203.08024

Next-gen CMB experiments will allow to better characterize the properties of light relics through:

- Better determination of the optical depth from large-scale Emodes
- Constraints on late-time structure formation from lensing
- Better measurement of the small-scale polarization (damping tail)

### DARK ENERGY SPECTROSCOPIC INSTRUMENT



First cosmology results presented in April 2024

- Largest 3D map of the Universe currently available
- Lookback time 11 Gyrs



## BARYON ACOUSTIC OSCILLATIONS (BAOS)



BAOs are the imprint left by the finite sound speed of the baryon-photon fluid in the distribution of galaxies. BAOs constrain the expansion history



#### OTRANTO, SEP. 7<sup>TH</sup>, 2024

#### M. LATTANZI





Vera Rubin Observatory Ground-based Under construction, expected completion in 2024

Euclid Satellite Launched July 1<sup>st</sup> 2023 Nancy Roman Space Telescope Launch in 2027



## THE EUCLID MISSION



**Euclid** is an ESA M-class space mission devoted to studying :

- the origin of the **accelerated expansion** of the Universe
- Dark energy, dark matter and the behaviour of gravity at large scales
- + neutrino masses, the initial conditions of cosmological evolution, ...

Euclid will measure **weak lensing** and **galaxy clustering** observing 15.000 deg<sup>2</sup> (>1/3 of the sky) down to z=2 (lookback time 10 Gyrs) + 3 deep fields (40 deg<sup>2</sup>)

This will allow to reconstruct the **expansion history** and the **growth of cosmological structuree** 

**Euclid lift-off on July 1st, 2023!** 



$$k_{\rm fs} \simeq 0.018 \,\Omega_m^{1/2} \left(\frac{m_{\nu}}{1 \,{\rm eV}}\right)^{\prime \prime 2} h {
m Mpc}^{-1}$$
 Free streaming scale

$$\delta_m(k\gg k_{
m fs})\propto a^{1-(3/5)\Omega_
u/\Omega_m}$$
 Suppressed growth

$$k_p r_s + \phi = p \pi$$
 Acoustic phase shift

M. LATTANZI

NOW 2024

### NEUTRINOS AND STRUCTURE FORMATION



Neutrino free streaming suppresses small-scale density fluctuations

Effect is proportional to the total energy density in neutrinos

$$\Omega_v h^2 = 6.2 imes 10^{-4} \left(rac{\sum m_v}{58 \, \mathrm{eV}}
ight)$$

Lesgourgues & Verde, RPP 2019

### NEUTRINO MASSES AFTER PLANCK



M. LATTANZI

NOW 2024

### v masses in $\Lambda$ CDM: present status



M. LATTANZI

### $\nu$ masses in $\Lambda \text{CDM}$ Extensions

It is by now well known that neutrino mass constraints are degraded in:

- Dynamical DE models (but only for phantom DE!, see e.g. Vagnozzi et al. 2019)
- Non-flat models
- Models with varying lensing amplitude (which is however not a physical parameter – basically a way to eliminate the information from CMB lensing)

based on S. Roy Choudhury & S. Hannestad (2020) arXiv 1907.12598

See also Di Valentino et al. [arXiv:1908.01391]  $\Sigma m_v < 0.52 \text{ eV}$  in a 12-parameters cosmological model



#### OTRANTO, SEP. 7<sup>TH</sup>, 2024

#### M. LATTANZI

## DESI CONSTRAINTS ON NEUTRINO MASSES



First cosmological results from DESI have appeared last April

Planck+ACT+DESI BAO Preference for vanishing neutrino masses

 $\Sigma m_v < 0.072 \text{ eV}$ 

## DESI CONSTRAINTS ON NEUTRINO MASSES



- Driven by higher-than-expected CMB lensing (Green&Meyers<sup>1</sup>)
- Hinting at new physics in the neutrino sector (decay, annihilation...) or elsewhere? (Craig et al<sup>.2</sup>)
- Bound weakens including dynamical DE (Green&Meyers<sup>1</sup>, Naredo-Tuero et al.<sup>3</sup>)
- Also weakens when using Planck PR4 likelihood (Naredo-Tuero et al.<sup>3</sup>)
- Driven by a single redshift bin in the DESI data (Naredo-Tuero et al.<sup>3</sup>)

<sup>1</sup> arXiv:2407.07878 <sup>2</sup> arXiv:2405.00836 <sup>3</sup> arXiv:2407.13831 TL;DR (see the next slides for more details!)

- Different combinations of next-generation CMB and LSS measurements will provide a sensitivity for Σm<sub>v</sub> in the 15 – 50 meV range. The lower-end sensitivities rely on a cosmic-variance limited measurement of the reionization optical depth from LiteBIRD.
- This is enough for a up to 4sigma measurement of the minimum mass in NO allowed by oscillation experiments (~60 meV).
- Will also allow to determine the mass ordering if the sum of the masses is close enough to 60 meV.

### SIMONS OBSERVATORY



| Table 1: Summary of SO-Nominal key science goals <sup>a</sup> |                      |                   |                    |                                |  |  |  |  |  |  |  |
|---------------------------------------------------------------|----------------------|-------------------|--------------------|--------------------------------|--|--|--|--|--|--|--|
|                                                               | Current <sup>b</sup> | SO-Nomin          | al (2022-27)       | Method <sup>d</sup>            |  |  |  |  |  |  |  |
|                                                               |                      | Baseline          | Goal               |                                |  |  |  |  |  |  |  |
| Primordial                                                    |                      |                   |                    |                                |  |  |  |  |  |  |  |
| perturbations (§2.1)                                          |                      |                   |                    |                                |  |  |  |  |  |  |  |
| $r (A_L = 0.5)$                                               | 0.03                 | 0.003             | 0.002 <sup>e</sup> | BB + external delensing        |  |  |  |  |  |  |  |
| $n_s$                                                         | 0.004                | 0.002             | 0.002              | TT/TE/EE                       |  |  |  |  |  |  |  |
| $e^{-2\tau} \mathcal{P}(k=0.2/\mathrm{Mpc})$                  | 3%                   | 0.5%              | 0.4%               | TT/TE/EE                       |  |  |  |  |  |  |  |
| $f_{ m NL}^{ m local}$                                        | 5                    | 3                 | 1                  | $\kappa \times LSST-LSS$       |  |  |  |  |  |  |  |
|                                                               |                      | 2                 | 1                  | kSZ + LSST-LSS                 |  |  |  |  |  |  |  |
| <b>Relativistic species</b> (§2.2)                            |                      |                   |                    |                                |  |  |  |  |  |  |  |
| $N_{ m eff}$                                                  | 0.2                  | 0.07              | 0.05               | TT/TE/EE + $\kappa\kappa$      |  |  |  |  |  |  |  |
| Neutrino mass (§2.3)                                          |                      |                   |                    |                                |  |  |  |  |  |  |  |
| $\Sigma m_{\nu}$ (eV, $\sigma(\tau) = 0.01$ )                 | 0.1                  | 0.04              | 0.03               | $\kappa\kappa$ + DESI-BAO      |  |  |  |  |  |  |  |
|                                                               |                      | 0.04              | 0.03               | $tSZ-N \times LSST-WL$         |  |  |  |  |  |  |  |
|                                                               |                      |                   |                    |                                |  |  |  |  |  |  |  |
| $\Sigma m_{\nu}$ (eV, $\sigma(\tau) = 0.002$ )                |                      | 0.03 <sup>f</sup> | 0.02               | $\kappa\kappa$ + DESI-BAO + LB |  |  |  |  |  |  |  |
|                                                               |                      | 0.03              | 0.02               | $tSZ-N \times LSST-WL + LB$    |  |  |  |  |  |  |  |

M. LATTANZI

### LITEBIRD+CMB-S4+DESI/LSST



M. LATTANZI

NOW 2024

### EUCLID+CMB

|        |                           |                  |                                                                                                                   | $\Lambda { m CDM} + \sum m_{m  u}$ |                         |                      |        |            |            |                          |  |
|--------|---------------------------|------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|----------------------|--------|------------|------------|--------------------------|--|
|        |                           | ·····            |                                                                                                                   |                                    | $\Omega_{\mathrm{m,0}}$ | $100\Omega_{ m b,0}$ | h      | $n_{ m s}$ | $\sigma_8$ | $\sum m_{ u} [{ m meV}]$ |  |
|        | Inverted Ordering         |                  | Euclid-only                                                                                                       |                                    |                         |                      |        |            |            |                          |  |
| 0.3    | Normal Ordering           |                  | $\mathrm{GC}_{\mathrm{sp}}$                                                                                       |                                    | 0.0068                  | 0.37                 | 0.033  | 0.029      | 0.0077     | < 320                    |  |
|        |                           |                  | $\mathrm{WL}+\mathrm{GC}_{\mathrm{ph}}+\mathrm{XC}_{\mathrm{ph}}$                                                 |                                    | 0.0032                  | 0.36                 | 0.035  | 0.017      | 0.0047     | < 260                    |  |
|        | Planck (TT TE EE+lensing) |                  | $\mathrm{WL}+\mathrm{GC}_{\mathrm{ph}}+\mathrm{XC}_{\mathrm{ph}}+\mathrm{GC}_{\mathrm{sp}}$                       |                                    | 0.0026                  | 0.24                 | 0.022  | 0.013      | 0.0039     | 56                       |  |
|        |                           |                  | $\underline{\text{WL+GC}_{\text{ph}}\text{+}\text{XC}_{\text{ph}}\text{+}\text{GC}_{\text{sp}}\text{+}\text{CC}}$ |                                    | 0.0025                  | 0.24                 | 0.022  | 0.012      | 0.0037     | 53                       |  |
| eV     | Euclid                    |                  | $\mathit{Euclid}{+}\mathrm{CMB}$                                                                                  |                                    |                         |                      |        |            |            |                          |  |
| Sč<br> |                           |                  | Euclid+Planck                                                                                                     |                                    | 0.0023                  | 0.033                | 0.0021 | 0.0022     | 0.0033     | 23                       |  |
| SSC    |                           |                  | Euclid+CMB-S4+LiteBIRD                                                                                            |                                    | 0.0021                  | 0.024                | 0.0016 | 0.0014     | 0.0028     | 16                       |  |
| na     |                           | Plan             | ack   out                                                                                                         |                                    |                         |                      |        |            |            |                          |  |
| 0      |                           |                  | ich + ext.                                                                                                        | A robidio o o                      |                         |                      |        |            |            |                          |  |
| .g 0.1 |                           |                  |                                                                                                                   | Archidiacono et al., (Euclid       |                         |                      |        |            |            |                          |  |
| uti    |                           |                  | collaboration)                                                                                                    |                                    |                         |                      |        |            |            |                          |  |
| ne     |                           | arXiv:2405.06047 |                                                                                                                   |                                    |                         |                      |        |            |            |                          |  |
| of     |                           |                  |                                                                                                                   |                                    | 0.00047                 |                      |        |            |            |                          |  |
| Ш      |                           |                  |                                                                                                                   |                                    |                         |                      |        |            |            |                          |  |
| Su     |                           |                  | S. Pamuk talk on Sep.                                                                                             |                                    |                         |                      |        |            |            |                          |  |
|        |                           |                  |                                                                                                                   | 3rd I                              |                         |                      |        | •          |            |                          |  |
|        |                           |                  |                                                                                                                   |                                    |                         |                      |        |            |            |                          |  |
| 0.03   | - Euclid+CMB-S4+LiteBIRD  |                  | -                                                                                                                 |                                    |                         |                      |        |            |            |                          |  |
|        |                           |                  |                                                                                                                   |                                    |                         |                      |        |            |            |                          |  |
|        |                           | Euclid+          | Planck                                                                                                            |                                    |                         |                      |        |            |            |                          |  |
| 0      | .001 0.01                 | 0.1              | 0.3                                                                                                               |                                    |                         |                      |        |            |            |                          |  |
|        | Lightest neutrin          | o mass [eV]      |                                                                                                                   |                                    |                         |                      |        |            |            |                          |  |
|        |                           |                  |                                                                                                                   |                                    |                         |                      |        |            |            |                          |  |

#### M. LATTANZI

### NEFF AS A PROBE OF NEW PHYSICS



Theoretical expectation for the three SM neutrinos\* :

$$N_{eff} = 3.0440 \pm 0.0002$$

In general, the observed N<sub>eff</sub> puts tight constraints on theories beyond the SM and beyond  $\Lambda$ CDM

\* Dolgov; Mangano+ 2005; ....; Akita&Yamaguchi 2020; Bennett+,2020; Froustey+ 2020

#### M. LATTANZI

### NEFF AS A PROBE OF NEW PHYSICS



A deviation from the standard value of  $N_{\text{eff}}$  might be due to:

- Additional light species (e.g. sterile neutrinos, thermal axions)
- Nonstandard expansion history (e.g. lowreheating temperature scenarios)
- New physics affecting neutrino decoupling (as due e.g. to nonstandard v-electron interactions)
- Large lepton asymmetry

• ....

In general, the observed N $_{eff}$  puts tight constraints on theories beyond the SM and beyond  $\Lambda CDM$ 

#### M. LATTANZI

#### NOW 2024

### NEFF AS A PROBE OF NEW PHYSICS



Both a blessing and a curse!

We can use  $\Delta N_{eff} = N_{eff}$ -3.044to probe a wide range of models of new physics...

....however, if  $\Delta N_{eff} \neq 0$  is measured, how should we interpret it?

- Look for other cosmological signatures (concurring signal in the sum of the masses, effects on cosmological perturbations....)
- Search for confirmation in the lab

(not really much different from the present situation with dark matter and dark energy, if you think of it!)

#### M. LATTANZI

#### NOW 2024

# N<sub>EFF</sub> FROM SO



SO collaboration, 2018

$$\sigma(N_{\rm eff}) = 0.07 [0.05]$$

M. LATTANZI

## $N_{EFF}$ FROM CMB-S4



### LIGHT RELICS FROM FREEZE-IN

Next-gen experiments will allow to probe the nonthermal (freeze-in) regime of light relics production

Relevant e.g. for the magnetic moment of Dirac neutrinos... (Lucente, Carenza, Gerbino, Giannotti, ML, PRD 2024)



### LIGHT RELICS FROM FREEZE-IN

Next-gen experiments will allow to probe the nonthermal (freeze-in) regime of light relics production

... or for B-L models

(Caloni, Stengel Gerbino, ML, arXiv: 2405.09449)



$$\mathcal{L}=g'Z'_{\mu}\sum_{i}\left[rac{1}{3}\left(ar{u}_{i}\gamma^{\mu}u_{i}+ar{d}_{i}\gamma^{\mu}d_{i}
ight)-ar{e}_{i}\gamma^{\mu}e_{i}-ar{
u}_{L,i}\gamma^{\mu}
u_{L,i}-ar{
u}_{R,i}\gamma^{\mu}
u_{R,i}
ight]\,,$$

### SUMMARY

- Cosmology provides tight constraints on the sum of neutrino masses in the framework of the LCDM model
- ... in fact, maybe too tight! Hint for new physics or something else?
- A wealth of new data will be available in the next years from nextgeneration CMB and LSS experiments
- Expect to measure minium neutrino mass in NO (assuming the LCDM model)
- Measurements of N<sub>eff</sub> will provide information on the light relics sector...
- ... allowing to probe the freeze-in production regime (i.e. very weak couplings)

## **THANKS!**

# **BACKUP SLIDES**

### FORECASTS FOR FUTURE CMB+LSS

0.08

0.07

 $\tau_{reio}$ 

0.05

0.04

0 0.03 0.06 0.09

 $M_{\nu}$ 



Brinckmann, Hooper,+, JCAP 2019

 $\sigma(\Sigma m_v) = 0.04 \text{ eV}$  from SO (primary+lensing) + DESI BAO (SO Collaboration 2018)

 $\sigma(\Sigma m_v) = 0.042 \text{ eV from LiteBIRD} + \text{CMB-S4}$ = 0.012 eV + Euclid

(0.063 and 0.068 eV in DDE models) Brinckmann, Hooper,+, JCAP 2019

CMB+LSS will provide a statistically significant detection of neutrino masses in  $\Lambda$ CDM (remember  $\Sigma m_v > 0.06 \text{ eV}$ ).

Guaranteed result: either we measure neutrino masses, or we find that the LCDM model has to be amended

See also Allison et al 2015; Boyle & Komatsu 2018; Archidiacono et al 2017.

#### M. LATTANZI

#### NOW 2024

### SIMONS OBSERVATORY - MNU

•CMB lensing from SO combined with DESI BAO  $\sigma(\Sigma m_{\nu}) = 0.04 \,\text{eV} [0.03 \,\text{eV}]$ 

•Sunyaev-Zeldovich cluster counts from SO calibrated with LSST weak lensing  $\sigma(\Sigma m_{\nu}) = 0.04 \text{ eV} [0.03 \text{ eV}]$ 

•thermal SZ distortion maps from SO combined with DESI BAO  $\sigma(\Sigma m_{\nu}) = 0.05 \,\mathrm{eV} \left[ 0.04 \,\mathrm{eV} \right]$ 

•legacy SO dataset combined with cosmic-variance-limited measurement of reionization optical depth from LiteBIRD

 $\sigma(\Sigma m_{\nu}) = 0.02 \,\mathrm{eV}$ 

SO Collaboration, 2018

## THE EUCLID MISSION



**Euclid** is an ESA M-class space mission devoted to studying :

- the origin of the **accelerated expansion** of the Universe
- Dark energy, dark matter and the behaviour of gravity at large scales
- + neutrino masses, the initial conditions of cosmological evolution, ...

Euclid will measure **weak lensing** and **galaxy clustering** observing 15.000 deg<sup>2</sup> (>1/3 of the sky) down to z=2 (lookback time 10 Gyrs) + 3 deep fields (40 deg<sup>2</sup>)

This will allow to reconstruct the **expansion history** and the **growth of cosmological structuree** 

 $\sigma(\Sigma m_v) = 0.020 \text{ eV}$  from Euclid + Planck

(Sprenger et al. 2019)



### NEUTRINO MAGNETIC MOMENT

Measurements of Neff can be used to constrain the neutrino magnetic moment



M. LATTANZI

### EARLY COMMISSIONING TEST IMAGE, NISP INSTRUMENT





### **PROBES OF STRUCTURE FORMATION**



Different means of reconstructing a 3D map of the matter distribution:

- Galaxy clustering
- Cosmic shear (aka galaxy weak lensing)
  - Galaxy clusters
  - Lyman-alpha forest
    - 21cm emission

### PROBES OF STRUCTURE FORMATION

Galaxy clustering as measured by the Sloan Digital Sky Survey



Image Credit: M. Blanton and the Sloan Digital Sky Survey.



#### M. LATTANZI

NOW 2024

## $\nu$ masses in $\Lambda \text{CDM}$ Extensions

Constraints can be further loosened in alternative models, e.g.

- Neutrino decays
- Late-time phase transitions (mass-varying neutrinos)
- Low-reheating scenarios
- Long-range v interactions
- Conversion to lighter states

In some cases, this would reopen the window for a detection in KATRIN (see e.g. Alvey et al, 2021)



**NOW 2024** 



#### M. LATTANZI

### **NEUTRINO PARAMETERS FROM CMB-S4**



CMB-S4 Science Book (arXiv: 1610:02743)

M. LATTANZI

TAUP 2023

VIENNA, AUG. 28<sup>TH</sup>, 2023

### **NEUTRINO MAGNETIC MOMENT**

Measurements of Neff can be used to constrain the neutrino magnetic moment



Carenza+ (incl ML, arXiv:2211.0432)

#### M. LATTANZI

#### NOW 2024