

Beta decay and neutrino mass:

KATRIN and beyond

Tritium

3.016

Neutrino Oscillation Workshop NOW 2024, Otranto, Italia Magnus Schlösser Karlsruhe Institute of Techology Institute for Astroparticle Physics Tritium Laboratory Karlsruhe

KIT – The Research University in the Helmholtz Association

www.kit.edu

The role of massive neutrinos and motivations to measure it

Neutrino masses bring in a **fundamental energy scale** (besides Higgs scale)

Model for mass generation needs: mixing matrix **AND mass scale**

Cosmology and the role of neutrinos therein **may be more complex** (what is DE, ...?)

> 0vββ observation **not necessarily** points to an **neutrino mass**

Signal is "in reach": Minimal mass scales exist! " $m(v_e)$ " > 10 meV (normal mass ordering) " $m(v_e)$ " > 50 meV (inverted mass ordering)

Ways to access the neutrino mass

			H H H H H H H H H H H H H H H H H H H
	Cosmology	Search for 0vββ	β-decay & electron capture
Observable	$M_ u = \sum_i m_i$	$m_{etaeta}^2 = \left \sum_i U_{ei}^2 m_i ight ^2$	$m_eta^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	0.12 eV (0.072 eV)	0.156 eV	0.8 eV
Model dependence	Multi-parameter cosmological model	 Majorana v contributions other than m(v)? nuclear matrix elements, g_A 	Direct, only kinematics; no cancellations in incoherent sum

3 06.09.2024 Magnus Schlösser | Beta decay and neutrino mass: KATRIN and beyond

Institute for Astr This talk

Tritium Laboratory Karlsruhe

Complementarity and need for direct mass measurements

NuFit, J. High Energ. Phys. 2020, 178 (2020)

Direct mass experiments

Direct, model-independent access to neutrino mass

 $oldsymbol{eta}^{(-)}$ decay $m_eta^2 = \sum_i |U_{ei}|^2 \, m_i^2$

 $X \to Y + e^- + \overline{\nu_e}$

Measurement of kinetic energy of electron

Electron capture

$$X + e^{-}(\text{shell}) \rightarrow Y^* + \nu_e \qquad Y^* \rightarrow Y + E_C$$

Measurement of internal excitation of daughter atom

(Anti-) neutrino mass determined from shape distortion near kinematic endpoint

Institute for Astroparticle Physics, Tritium Laboratory Karlsruhe

Challenges for achieving mass low sensitivity

Low kinematic endpoint, high decay rate

High signal (\rightarrow statistics)

Low background (\rightarrow statistics)

	β-decay	Electror	capture	
Chosen isotope	³ H = T	¹⁶³ Ho		
Endpoint	18.6 keV	2.8 keV		
Half life	12.3 years	4570 years		
Typ. production	n-capture in D_2O	n-irradiation of ¹⁶² Er		
	This talk		See Talk 06 Sep, 17:50	
High energy resolution (→ sensitivity) Elena Ferri Low and quantified systematic effects				

Tritium beta decay experiments

Direct, model-independent access to neutrino mass

KATRIN's aim: Measurement of m_v with a sensitivity of 0.2 eV/c²

Institute for Astroparticle Physics, Tritium Laboratory Karlsruhe

Molecular decay

Final-state distribution

"model-dependence"

Established measurement principles CRES MAC-E filter

- Cyclotron Radiation **Emission Spectroscopy**
- Measuring energy via frequency

OTNM

- Magnetic Adiabatic Collimation with an Electrostatic Filter
- Measuring energy by applying a high-pass filter

PTOLEMY

Calorimeters

- Low-temperature micro calorimeters
- Measuring energy by temperature change

ES **ECHo** See Talk 06 Sep, 17:50 Elena Ferri

Basic principle of KATRIN-like experiment

Karlsruhe Tritium Neutrino Experiment (KATRIN)

11 06.09.2024 Magnus Schlösser | Beta decay and neutrino mass: KATRIN and beyond

Institute for Astroparticle Physics, Tritium Laboratory Karlsruhe

Tritium Laboratory Karlsruhe (TLK) A facility for high activity tritium experiments

- Two missions:
 - Fuel cycle for fusion reactors
 - KATRIN Experiment

We develop safe tritium technology and versatile tritium analytics since 1993

- Licensed for 40 g Tritium
- Closed tritium cycle for recycling and purifying tritium in gram amounts
- > 50 experience scientists, engineers and technicians

We are able to setup and operate a large variety of experiments with tritium

KATRIN data releases and neutrino mass results

2019: *m_v* < 1.1 eV (90% CL)

2022: *m_v* < 0.8 eV (90% CL)

• ~6 Mio counts

Current data set

- 259 measurement days
- **1757** *β*-scans
- ~36 Mio counts

Expected sensitivity < 0.5 eV

First 5 campaigns: taking data while finding optimal operation conditions

Data combination challenges

Systematic uncertainties

- Statistical uncertainties dominate
- Significant reduction of the backgroundrelated systematics
- Better control over source scattering
- Increased conservative uncertainties in this release
 - Reduced uncertainties in current data
 - Reduction of the molecular final-states uncertainties

Forecast: individual systematics in final KATRIN analysis (post 2025) expected to be > 0.01 eV^2 range

New best fit and upper limit

Institute for Astroparticle Physics, Tritium Laboratory Karlsruhe

KATRIN data taking continues

Established measurement principles CRES MAC-E filter

- Cyclotron Radiation Emission Spectroscopy
- Measuring energy via frequency

Magnetic Adiabatic Collimation

Measuring energy by applying a high-pass filter

PTOLEMY

Calorimeters

- Low-temperature micro calorimeters
- Measuring energy by temperature change

OTNM

Cyclotron Radiation Emission Spectroscopy

Project 8 – Results

- Phase I: First use of CRES for electron spectroscopy (^{83m}Kr)
- Phase II: First use of CRES for tritium beta decay electron spectroscopy
 → Neutrino mass limit (m_β < 155 eV)

A. Ashtari Esfahani et al. Phys. Rev. Lett. 131, 102502 (2023)

Going beyond KATRIN

PTOLEMY

KATRIN final: < 0.3 eV (90% CL) Distinguish between degenerate and hierarchical scenario

New technologies: < 0.05 eV Cover inverted ordering

KATRIN++ mission

- PROJ • Next generation m_{ν} experiment
- Identify and develop scalable technology
- Use KATRIN/TLK infrastructure for R&D phase (~ 7 years)

Going beyond KATRIN

Differential measurement (FWHM < 1 eV)</p>

- Better use of statistics
- Lower background
- Atomic tritium
 - Avoid broadening (~ 1 eV)
 - Avoid limiting systematics of T₂

KATRIN and TLK as ideal R&D facilities

Differential detector technology

Atomic source technology

25 06.09.2024 Magnus Schlösser | Beta decay and neutrino mass: KATRIN and beyond

Institute for Astroparticle Physics, Tritium Laboratory Karlsruhe

KATRIN and **TLK** as ideal R&D facilities

Further options?

 eV resolution for differential detection immune to Rydberg-like backgrounds Option 1 Micro-calorimeters / Quantum sensor

Quantum sensors as high resolution differential detectors

incoming

particle

Advantages

- Energy resolution O(eV) compared to conventional detectors O(100 eV)
- Nearly 100% quantum efficiency
- Broad spectrum of possible applications

e.g. Metallic Magnetic Calorimeters (MMC) Temperature-dependence in sensor magnetization Read-out by SQUID Energy resolution: - Current: $\Delta E \leq 2 \text{ eV}$ - Midterm: $\Delta E \leq 1 \text{ eV}$ SQUID Future: $\Delta E \sim 100 \text{ meV}$

Not yet tested with external electrons

Next R&D goal: Demonstrate KATRIN with a quantum sensor array

Challenges of coupling quantum sensor detector array to KATRIN infrastructure

- Type of quantum sensor
- Operation in magnetic field (~10 mT)
- Coupling of mK cryo-platform with RT spectrometer
- Large area detector and multiplexing of ~1e6 channels
- Limits to energy resolution

ELECTRON: e⁻ spectroscopy with quantum sensors

8 channel detector chips & front-end SQUID chips

KIT-IMS (Kempf group)

Metallic Magnetic Calorimeters (MMC)

Next R&D goal: Demonstrate single electron tagging for ToF

Single electron tagging is challenging

Cyclotron radiation emission detection (CRES) Coreless cryogenic current comparator

Tiny signals vs. minimal noise floor

R&D ongoing at U North Carolina

Strategy

- "Single channel" detector
 → less complex than quantum sensor array (QSA)
- Differential measurement with ToF before QSA ready
- Work on techniques to improve ToF resolution (U Münster)

KATRIN and TLK as ideal R&D facilities

Differential detector technology

Atomic source technology

31 06.09.2024 Magnus Schlösser | Beta decay and neutrino mass: KATRIN and beyond

Institute for Astroparticle Physics, Tritium Laboratory Karlsruhe

KATRIN and **TLK** as ideal R&D facilities

Atomic Tritium Demonstrator at TLK

Aim for investigation

- Develop atom cooling mechanism
- Trapping times / max. densities

Interplay of beta-driven plasma (meV-eV) and ultra-cold trapped atoms (neV)

Tritium atom throughput on the order of 10 g/day (c.f. KATRIN: 40 g/day)

Essential for next generation neutrino mass experiment (e.g. KATRIN++) : Demonstrate the large scale generation and cooling (~10 mK) of atomic tritium

Atomic source R&D progress

- Non-tritium hydrogen cracker being operated
- Characterization measurements for tritium beamline ongoing

- Installation of first ever atomic tritium source at TLK ongoing
- First results expected in 2024

Atomic Tritium Demonstrator at TLK

Concept: CRES readout in **magneto-gravitational trap** for atomic tritium Concept: CRES readout in **race-track** for atomic tritium

Future of direct neutrino mass detection

Aim: direct detection of big-bang neutrinos; determination of neutrino mass is "by-product"

M.G. Betti et al JCAP07(2019)047

P٦

Combine technologies (TES, CRES, novel drift filter) with large scale O(100g) tritiated graphene target

https://ptolemy.lngs.infn.it/

2023 Hamburg

Start of technology demonstrator @LNGS soon

Institute for Astroparticle Physics, Tritium Laboratory Karlsruhe

PROJECI **KATRIN++** and other next generation projects

- Currently, no technology **proven** to reach ultimate sensitivity
- Neutrino mass detection must be confirmed by independent technologies
- Atomic tritium trap is key independently of detection techniques

CRES, bolometer and ToF complementary

Atomic source research

Atomic tritium trap is key independently of detection techniques

Mission: Realize (global) Atomic Tritium Demonstrator (at TLK)

Final R&D goal Atomic tritium with Quantum sensor array

Beta decay and neutrino mass: KATRIN and beyond Scientific 2019-2025 2026-2027 2028-2034 goal Phase 2 (differential) Phase 1 (integral) **R&D** phase for KATRIN++ neutrino mass keV-sterile ν Neutrino mass Differential detection R&D Differential detection demonstrators Atomic tritium R&D Atomic tritium demonstrator

• KATRIN on way to achieve 1000 d measurement time (final sensitivity $m_{\beta} < 0.3 \text{ eV}$). Next m_{β} result : ~ 0.5 eV sensitivity

- We will be ready for TRISTAN-Operation at the end of 2025 (Search for keV sterile neutrinos)
- Ultimate neutrino mass experiment (Normal Ordering; sensitivity on $m_{\beta} < 40 \text{ meV}$) requires differential detector principle und an atomic tritium source \rightarrow R&D Plan for PoF-V
- KATRIN++ invites research groups for tackling challenges together

KATRIN collaboration

https://www.linkedin.com/company/tritiumlab/

Atomic vs molecular tritium

Going beyond KATRIN

Improved measurement principle

Integral measurement (high pass filter)

- Energy resolution determined by filter
- Detector "only" counts
- **Reduced statistics**

Differential measurement

Energy resolution determined by A) detector or B) time of flight

46

27.02.2024

Next R&D goal: Demonstrate single electron tagging for ToF

Karlsruhe Institute of Technology

Fast detector: stop

Main spectrometer: delay line due to retardation pot.

Strategy

- "Single channel" detector
 → less complex than quantum sensor array (QSA)
- Differential measurement with ToF before QSA is ready
- Work on techniques to improve ToF resolution (U Münster)

Single electron tagging is challenging

Cyclotron radiation emission detection (CRES)

47

KAMATE – Karlsruhe Mainz Atomic Tritium experiment

Scientific / technical goals

- Atomic beam characterization
 - Atomic fraction
 - Maximal flow rates / pressure limits
 - Isotopic effects
 - Angular dispersion
 - Time-of-flight (upgrade)
 - Wire-detector

Mainz

- Cooling / accommodation (upgrade)
 - Velocity measurement
 - Recombination

Sophisticated setup based on Mainz setup Multi chamber / collimation design, tilting mechanism,

beam control, source parameter control, beam analytics

KAMATE – Karlsruhe Mainz Atomic Tritium experiment

KAMATE 0.5 (at Mainz) Identify best source at MATS with H/D

KAMATE 1.0 (at TLK) Operate KAMATE 0.5 setup with T. T(Beam) ~ 2500 K

KAMATE 2.0 (at TLK) Add accommodator as first stage cooling. T(Beam) ~ 150 K

KAMATE 3.0 (at TLK)

Add nozzle for second stage cooling and beam temperature measurement setup (time of flight).

T(Beam) ~ 4 K

Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

A. Lindman

2028

Preparing TLK for Atomic Tritium Demonstrator (ATD)

PETRA box

- In process of disposal/repurposing of former experiment
- Next step: decontamination

Other systems

50

e.g. former tritium retention system, gas bottles, control cabinets, ...

 \rightarrow Relocation in progress

ATD Glove box infrastructure

e.g. large tritium retention system (~500k€), tritium supplies, …

 \rightarrow Acquisition on-going

Working principle of KATRIN

Λ