Neutrinos and hidden particle searches at CERN

Giovanni De Lellis University "Federico II" and INFN, Naples, Italy

- Neutrino experiments running at the LHC: FASER and SND@LHC
- First results from the data taking
- The Beam Dump Facility and the SHiP experiment at the SPS Neutrino Oscillation Workshop, Otranto, September 5th 2024

Neutrino physics at the LHC: motivation

92/84 ЦНС

at the LHC

- A. De Rujula and R. Ruckl, Neutrino and muon physics in the collider mode of future accelerators, CERN-TH-3892/84 LHC
- Klaus Winter, 1990, observing tau neutrinos at the LHC
- F. Vannucci, 1993, neutrino physics at the LHC
- <u>http://arxiv.org/abs/1804.04413 April 12th 2018</u>, First paper on feasibility of studying neutrinos at LHC

Investigating the background for a neutrino detector in different locations with a measurement campaign

 $\frac{VN}{N} = Q1 \text{ in S45 at 25m}$ $\frac{N}{N} = UJ53 \text{ and } UJ57 \text{ at 90-120m}$ $\frac{F}{F} = RR53 \text{ at } 237m$ $\frac{VF}{VF} = TI18 \text{ at } 480m \text{ (FASER}\nu \text{ measurements)}$

Journal of Physics G 46 (2019) 115008

Injection tunnels used at LEP

at the LHC

E.g. the TI18 tunnel in 2020

The LHC seen from the TI18 tunnel

Detectors ready for the run in March 2022

ForwArd Search ExpeRiment

FASER

SND@LHC detector

CALORIMETER

р

FRONT

Comparison of the neutrino fluxes and sources

Felix Kling, Laurence J. Nevay, Phys. Rev. D 104 (2021) 11, 113008 <u>https://arxiv.org/pdf/2105.08270.pdf</u>

Courtesy of F. Kling, normalised to 250 fb⁻¹

	Generators		$\mathrm{FASER}\nu$		SND@LHC						
	heavy hadrons	$ u_e + ar{ u}_e $	$ u_{\mu} + ar{ u}_{\mu} $	$ u_{ au} + ar{ u}_{ au} $	$ u_e + \bar{\nu}_e $	$ u_{\mu} + ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au}$				
	SIBYLL	1501	7971	24.5	223	1316	12.6				
	DPMJET	5761	11813	161	658	1723	31				
	Pythia8 (Hard)	2521	9841	57	445	1871	19.2				
	Pythia8 (Soft)	1616	8918	26.8	308	1691	12				
Combination (all)		2850^{+2910}_{-1348}	$9636\substack{+2176 \\ -1663}$	67.5^{+94}_{-43}	408^{+248}_{-185}	1651^{+220}_{-333}	$18.8^{+12}_{-6.6}$				

Two complementary LHC ν experiments

				L
		SND@LHC	FASER	
	Location	Off-axis : 7.2 < η < 8.4 Enhances charm parentage	On-axis : η > 9.2 Enhances statistics	
	Target	800 kg of tungsten	1100 kg of tungsten	
11.	Detector technology	Emulsion vertex detector , electromagnetic and hadronic calorimeters	Emulsion vertex detector and spectrometer	
	Neutrinos	Charged particles	Charged L particles Neutrinos	HC tunnel
	m rock Residual hadrons	LHC magnets	LHC Residual hadrons 100	m rock
unnel	480 г	m ATLAS pp collisions	480 m	TI12

SN

Physics goals

- Study neutrino interactions (cross-section, LFU, ..) in a new energy domain
- Lepton flavour universality tests with ν interactions with $R_{e\mu}$ and $R_{e\tau}$
- Use νs as probes of their parent, e.g. in some angular region ν_e production dominated by charm decays \rightarrow measuring charm production in pp collisions in the forward region
- Manyfold interest for the charm measurement in pp collision at high η
- Prediction of very high-energy neutrinos produced in cosmic-ray interactions → experiments also acting as a bridge between accelerator and astroparticle physics

IceCube Collaboration, six years data, Astrophysics J. 833 (2016) 3, https://iopscience.iop.org/article/10.3847/0004-637X/833/1/3/pdf

7+7 TeV *p-p* collisions correspond to 100 PeV proton interaction for a fixed target

Observation of collider neutrinos with 2022 data

Analyses of SND@LHC and FASER electronic detector data

FASER: PRL 131 (2023) 031801

SND@LHC: PRL 131 (2023) 031802

- Both experiments operating since the start of LHC Run 3
- Successful data-taking campaigns in 2022: electronic detectors uptime of ~95%
- Three emulsion detector exchanges in SND@LHC and two in FASER.

Day in 2022

Observation of collider muon neutrinos with 2022 data

13

FASER ν_{μ} CC observation with 2022 data

- \circ p > 100 GeV/c
- \circ r < 95 mm in the IFT
- \circ r < 120 mm at the front veto

Observed 153 neutrino event candidates with a statistical significance of 16σ

FASER

 $\mathcal{U}_{\nu\nu}\mathcal{U}_{\nu}\mathcal{U}_{\nu$

v_e observation in FASER

Target mass of 128.6 kg exposed in 2022 to 9.5 fb-1 of pp collisions at 13.6 TeV CoM energy

$4 v_e$ and $8 v_\mu$ candidates observed

The total background estimates are $0.025^{+0.015}_{-0.010}$ and $0.22^{+0.09}_{-0.07}$ for the ν_e and ν_{μ} selections, respectively.

PRL 133, 021802 (2024)

Updated ν_{μ} results (2022-2023) by SND@LHC

Density-weighted SciFi hits

Events expected in 68.6 fb⁻¹

- Signal: 19.1± 4.1
- Neutral hadrons: 0.25 ± 0.06

32 events observed

Observation of $0\mu \nu$ events by SND@LHC

Neutral hadron background

- Define background-dominated control region to normalise the simulation
- Events expected in signal region: 0.01 3.5
- Neutrino background
 - Muon neutrino CC interactions are the dominant background, with **0.12** expected events.
 - Tau neutrino CC interactions expected: 0.5
 0.002
- 0μ observation significance
 - Expected background: 0.13 ± 0.07 events
 - Expected signal: 4.7 events

Number of events observed: 6Observation significance 5.8 σ

Density-weighted SciFi hits

v_e -like candidate in SND

Multi- μ events in SND@LHC: resonances and tridents

18

• Run 4964: $\int Ldt = 0.31 f b^{-1}$, $\sigma_{inelastic} = 80 mb$, 2448 bunch crossings of 3564, $N_{collisions} = 25 \times 10^{12}$

 $T = 26 \times 10^3 s$, $N_{xings} = 0.72 \times 10^{12}$; Efficiency corrected average over this run: 300 tracks/s

- Single muon per bunch crossing: $\mu = 1.1 \times 10^{-5}$, Probability for k-track event from pile-up: $\frac{\mu^k e^{-\mu}}{k!}$
- Expected $N_{2 track} = 43$, observed 224; Expected: $N_{3 track} = 2 \times 10^{-4}$; Observed: 4 Additional rate due to SND@LHC Experiment, CERN SND@LHC Experiment, CERN SND@LHC Experiment, CERN Run / Event: 4964 / 983826 Run / Event: 4964 / 43093 un / Event: 4964 / 15803247 Time (GMT): 2022-10-01 12:06:5 ime (GMT): 2022-10-01 12:18:47 ima (GMT): 2022-10-01 13:45-6 trident process, muon pair production in rock, concrete, tungsten. SND@LHC Experiment, CERM Event: 4064 / 002026

Near future plans: upgraded SND@LHC for Run4

Expected ν yield for SND@LHC in the HL-LHC

 $\langle E_{\nu_{\tau}} \rangle = 1100 \overline{GeV}$ E[GeV]⁴

 10^{3}

10²

nteractions in AdvSND

(Much) more data coming...

Upgraded veto system at the end of 2023

Current analyses based on $10\div 20$ fb-1, large statistical improvement thanks to the good LHC run in 2024 and to the upgrade of the detector (increase the acceptance by a factor of 2)

The SHiP (Search for Hidden Sector) experiment at CERN

http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf Technical Proposal in 2015 EPJC (2022) 82:486

Experiment approved by the Research Board in March 2024

Motivation

The **Standard Model** provides an explanation for most of subatomic processes

- ◆ It fails to explain many observed phenomena
 - Dark Matter
 - Neutrino Oscillation and masses
 - Matter/antimatter asymmetry in the Universe

Energy Frontier:

Heavy particles \rightarrow high energy collisions

Intensity Frontier:

Very weakly interacting particles \rightarrow high intensity beam

 A Hidden Sector (HS) of weakly-interacting BSM particles as an explanation

Energy Scale

SHiP detector in more detail

SHiP strategy

- Initiative to identify
 - Full exploitation of unique physics potential of SPS available since CNGS (*Rep. Prog. Phys.* **79** (2016)124201)
 - Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next collider
 - →SPS suitability to explore Light Dark Matter and associated mediators, and v mass generation FIPs generically

→ Region that can *only* be explored by optimised beam-dump experiment

- ➔ Production modes in limited forward cone large lifetime acceptance
- →SPS energy and intensity provide huge production of charm, beauty and electromagnetic processes

Unique direct discovery potential in the world in the heavy flavour region, capable of reaching "physical floor/background floor"

SHiP strategy

- Initiative to identify
 - Full exploitation of unique physics potential of SPS available since CNGS (*Rep. Prog. Phys.* **79** (2016)124201)
 - Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next collider
 - →SPS suitability to explore Light Dark Matter and associated mediators, and v mass generation FIPs generically

Similar behaviour $\tau_{FIP} \propto \frac{-}{\epsilon_{FIP}^{\chi} m_{FI}^{y}}$ for all types of FIPs

→ Region that can *only* be explored by optimised beam-dump experiment

- ➔ Production modes in limited forward cone large lifetime acceptance
- →SPS energy and intensity provide huge production of charm, beauty and electromagnetic processes

Unique direct discovery potential in the world in the heavy flavour region, capable of reaching "physical floor/background floor"

SHiP strategy

- Initiative to identify
 - Full exploitation of unique physics potential of SPS available since CNGS (*Rep. Prog. Phys.* 79 (2016)124201)
 - Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next collider
 - →SPS suitability to explore Light Dark Matter and associated mediators, and v mass generation FIPs generically

- → Region that can *only* be explored by optimised beam-dump experiment
 - ➔ Production modes in limited forward cone large lifetime acceptance
 - →SPS energy and intensity provide huge production of charm, beauty and electromagnetic processes

Unique direct discovery potential in the world in the heavy flavour region, capable of reaching "physical floor/background floor"

BDF/SHiP experimental techniques

 \rightarrow Explore Light Dark Matter, and associated mediators - generically domain of FIPs - and v mass generation through:

Scattering signatures

Heavy target + detector ...

- Acceptance optimisation of both techniques described in <u>arXiv:2304.02511</u>, EPJC 83 (2023) 12
- Exhaustive search by aiming at model-independent detector setup
 - Full reconstruction and identification of both fully and partially reconstructible modes
 - → Sensitivity to partially reconstructed modes also proxy for the unknown
 - In case of discovery \rightarrow precise measurements to discriminate between models / test compatibility with hypothetical signal

→ FIP decay signature search in background-free environment and LDM scattering → Rich neutrino interaction physics with access to tau neutrino

HSDS: FIP decay search background evaluation Three categories of background from residual muons and neutrinos

- Backgrounds from μ and ν DIS dominated by random combinations of secondaries, not by V^0s
- Very simple and common selection for both fully and partially reconstructed events model independence

→ Possibility to measure background with data, relaxing veto and selection cuts, muon shield, decay volume

Criterion	Selection	Requirement		Expecte	ed background is <1 event
Track momentum (and track quality)		> 1.0 GeV/c		for 6×10^2	0 not (15 years of operation)
Vertex quality (distance of closest approach)	$< 1 \mathrm{cm}$			por (15 years of operation)
Track pair vertex position in decay volume		$> 5 \mathrm{cm}$ from inner wall	Background so	ource	Expected events
	>	100 cm from entrance (partially)	Neutrino DIS		< 0.1 (fully) / < 0.3 (partially)
Impact parameter w.r.t. target (fully recons	structed)	$< 10 \mathrm{cm}$	Muon DIS (fa	ctorisation)*	$< 5 \times 10^{-3}$ (fully) / < 0.2 (partially)
Impact parameter w.r.t. target (partially re	constructed)	$< 250 {\rm cm}$			$< 3 \times 10$ (runy) / < 0.2 (partially)
			Muon combina	atorial	$(1.3 \pm 2.1) \times 10^{-4}$
- I ime coincidence -	URI/2RI				

→ SHiP sensitivity is not limited by backgrounds in 6 x 10²⁰ PoT

SHiP sensitivities to FIPs are orders of magnitude better than other projects

HSDS: FIP decay search performance, all benchmarks

Exploration of (2-5 \otimes 1-2) orders of magnitude (coupling² \otimes mass) beyond current experiments in all benchmark models

SND: "Direct" light dark matter search

• Direct search through scattering, sensitivity to ϵ^4 instead of indirect searches ϵ^2 ($\not E$ technique)

10⁻⁹

⁺(10⁻¹⁰ 10⁻¹¹ 10⁻¹¹ × 10⁻¹²

10^{- 12}

10

20

→ Background is dominated by neutrino elastic and quasi-elastic scattering, for 6×10^{20} PoT

6 ×10 ²⁰	$ u_e$	$\bar{\nu}_e$	$ u_{\mu}$	$\bar{ u}_{\mu}$	all
Elastic scattering on e^-	156	81	192	126	555
Quasi - elastic scattering	-	27			27
Resonant scattering	-	-			-
Deep inelastic scattering	-	-			-
Total	156	108	192	126	582

 $m_x/m_V = 1/3, \alpha_D = 0.1$ Excluded

10⁻¹³ Expectation from relic density is within reach

50

200

500

 ν_e

50

 $d^2 \sigma^{
u(\overline{
u})}$

dxdy

 \pm

10-2

10-3

10-

v_{τ} cross-section, v-induced charm, structure functions, ...

33

Porticles	$\begin{array}{c} \hline \text{Decay channel} \\ \hline \tau \rightarrow \mu \\ \tau \rightarrow h \\ \tau \rightarrow 3h \\ \hline \tau \rightarrow e \\ \hline \text{total} \end{array}$	$ \begin{array}{cccc} & \nu_{\tau} & \overline{\nu}_{\tau} \\ & 4 \times 10^{3} & 3 \times 10^{3} \\ & 27 \times 10^{3} \\ & 11 \times 10^{3} \\ & 8 \times 10^{3} \\ & 53 \times 10^{3} \end{array} $	Comj reg	plemen gion to neasure	tary energy the LHC ements	ts 2 NNPDF3.01 NNPDF	rk distribution	ı		
				$\langle E \rangle$	CC DIS	0.8			\sim	
	$ u_{ au}$ Mean 54.32			[GeV]	interactions	0.6				
لم	74 14		$N_{ u_e}$	63	2.8×10^{6}	0.4 Pop Proc	Dhyc	70 (201	6) 12/201	
	τ		$N_{ u_{\mu}}$	40	8.0×10^{6}	0.2 - Rep. Plog	. Pilys.	79 (201	0) 124201	
	ν_{μ} Mean 40.17		$N_{ u_{ au}}$	54	8.8×10^4	0.05 0.	0.15	0.2	0.25 0.3 0.3 ×	5
	$\overline{\nu}_{\mu}$ Mean 33.33		$N_{\overline{ u}_e}$	49	$5.9 imes 10^5$	V _u u			μ+	
	Mean 63.11		$N_{\overline{ u}_{\mu}}$	33	$1.8 imes 10^6$	ξν-ind	uced c	harm		
			$N_{\overline{ u}_{ au}}$	74	$6.1 imes 10^4$	W^+		$\bar{\nu}_{\mu}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	$\overline{\nu}_e$ Mean 49.44					<i>d, s</i>	_		δ s	_
100 150 200 250 F4, F5	structure fund	ctions								
								(GeV)	with charm proc	ł
$=\frac{G_F^2 M E_{\nu}}{(1-G_F^2)^{1/2}} \bigg((y^2 x)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg((y^2 x)^2 \bigg((y^2 x)^2 \bigg)^2 \bigg((y^2 x)^2 \bigg((y$	$(x + \frac{m_{\tau}^2 y}{2\pi m_{\tau}^2 r})F_1 +$	$\left[\left(1-\frac{m_{\tau}^2}{1-m_{\tau}^2}\right)-(1+\frac{m_{\tau}^2}{1-m_{\tau}^2})\right]$	$\left[\frac{Mx}{T}\right] F_2$				$N_{ u_{\mu}}$	57	3.5×10^{5}	
$\pi (1+Q^2/M_W^2)^2 \setminus C^{0}$	$2E_{\nu}M'$	$4E_{\nu}^{2}$	$2E_{\nu}' \rfloor $				$N_{ u_e}$	71	1.7×10^{5}	
$\pm \left[xy(1-rac{y}{2}) - rac{m_{ au}^2 y}{4EM} ight]$	$F_3 + rac{m_{ au}^2 (m_{ au}^2 + m_{ au}^2)}{A E^2 M^2}$	$\frac{Q^2}{r}F_4$ $\frac{m_{ au}^2}{F_M}F_5$,		At LO F	$F_4 = 0, 2xF_5 = F_2$	C . M	$N_{\overline{ u}_{\mu}}$ $N_{\overline{ u}_{e}}$	50 60	0.7×10^{3} 0.3×10^{5}	
$L 2 4D_{V}M$	$\tau D_{\nu} m$			At NLO	$r_4 \sim 1\%$ at 10	Gev	total		6.2×10^{5}	

BDF/SHiP schedule: 15 years of data taking!

Accelerator schedule	2022	2023	2024	2025	2026		2027	2028		2029	2030	2031	2032	2033
LHC	Run 3				LS3							Run 4 LS4		
SPS (North Area)														
BDF / SHiP	Study		esign and p	orototyping			Produ	uction / C	anst	action / Ir	stallation	(Operation	
Milestones BDF			DR studies			PRR						B		
Milestones SHiP			TDR stu	dies			PRR				(B		
		ſ				,	,							
		Арр	roval for	TDR	Sub	miss	ion of	TDRs			Facility	commissi	oning	

- ~3 years for detector TDRs
- Construction / installation of facility and detector is decoupled from NA operation
- Availability of test beams challenging
- Important to start data taking >1 year before LS4
- Several upgrades/extensions of the BDF/SHiP in consideration over the operational life

Reach ν physics program and most sensitive FIBs search at CERN

https://home.cern/news/news/physics/new-lhc-experiments-enter-uncharted-territory

Stay tuned!