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This is an entirely new term which implies:

Fermion number violation → Baryogenesis via Leptogenesis

The first mass scale not related to the EW scale and the Higgs

To be searched for at experiments!!
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This simplest SM extension may connect to other open 
problems:

-L is produced in CP-violating and out-of-quilibrium N decays

Leptogenesis

M. Fukugita and T. Yanagida 1986

B←

W

W

B or L
current

← -L

and partially
converted to B by the 
SM sphalerons
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A new physics scale

But a very high MN worsens the Higgs hierarchy problem

Lightness of n masses could also come naturally from an 

approximate symmetry (B-L) 

Low                    and large  even if small 𝑚𝜈 ≈ 𝜇
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With lower MN possible connections with other open problems 

are easier to probe

ARS leptogenesis possible in the nMSM
E. K. Akhmedov, V. A. Rubakov and A. Yu. Smirnov hep-ph/9803255

T. Asaka and M. Shaposhnikov hep-ph/0505013

If 𝑚𝐷 small → 𝑁 not in thermal equilibrium (freeze-in production)

← ҧ𝜈𝐿𝐵 ←

M. Drewes, B. Garbrecht, P. Hernandez, M. Kekic, J. Lopez–Pavon, J. Racker, N. Rius, 
J. Salvado, D. Teresi 1711.02862

SM sphalerons ഥ𝑁



Links with other open problems: baryogenesis

If the low-E Seesaw mass is also dynamical:

New sources of CPV in the Yukawas

and 𝜙 could induce a 1st order pase transition:

EFM, J. López-Pavón, J. M. No, T. Ota, S. Rosauro-Alcaraz 2007.11008, 2210.16279

P. Hernandez and N. Rius hep-ph/9611227
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keV sterile n DM also possible in the nMSM in presence of a 

large L asymmetry 
X.-D. Shi and G. M. Fuller astro-ph/9810076

T. Asaka and M. Shaposhnikov hep-ph/0505013

Production via mixing (Dodelson-Widrow) is ruled out by bounds 
from X-ray searches

But production could be sufficiently enhanced in presence of
large L asymmetry (5-6 orders of magnitude larger than B).

Proof of concept via resonant leptogenesis with extremely 
degenerate (∆M ~10−7 eV for 2 GeV) neutrinos. Natural?? 
J. Ghiglieri, M. Laine 1905.08814, 2004.10766
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V. Gonzalez Macias and J. Wudka arXiv:1506.03825

M. Blennow, EFM, A. Olivares-Del Campo, 

S. Pascoli, S. Rosauro arXiv:1903.00006

DM interacts with 𝑁 at renormalizable level

The interaction is transmitted to 𝜈𝐿 via mixing

Interactions with the SM 𝜈𝐿 dominate DM

production as well as its detection prospects
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A new physics scale

But a very high MN worsens the Higgs hierarchy problem

Lightness of n masses could also come naturally from an 

approximate symmetry (B-L)   

eV keV MeV GeV TeV

Very different phenomenology at different scales 

MN could be anywhere…



A new physics scale

Precision
electroweak
and flavour

violation

eV keV MeV GeV TeV

If too heavy probe indirectly via
precisión measurements
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When the W and Z are integrated out to obtain the Fermi 
theory NSI are recovered!

see e.g. M. Blennow, P.Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 
arXiv:1609.08637 for the dictionary
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𝑁𝑁†
𝜇𝜇

But this agrees at ~10-3 with
GF from MW (modulo CDF), 

measurents of sinqw from

LEP, Tevatron and LHC and b
and K decays

LFU also strong bounds on
ratios:

From ratios of p, K, and lepton

decays

Also the invisible width of the Z
since NC are also affected

And LFV processes such as        
 → e g since the GIM

cancellation is lost
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Bounds from a global fit to flavour and Electroweak precision

Looking for NR: Non-Unitarity

See also P. Langaker and D. London 1988; S. M. Bilenky and C. Giunti hep-ph/9211269 ; E. 
Nardi, E. Roulet and D. Tommasini hep-ph/9503228; D. Tommasini, G. Barenboim, J. Bernabeu

and C. Jarlskog hep-ph/9503228; S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-
ph/0607020; S. Antusch, J. Baumann and EFM 0807.1003; D. V. Forero, S. Morisi, M. Tortola, 

and J. W. F. Valle 1107.6009; S. Antusch and O. Fischer 1407.6607; F.J. Escrihuela, D.V. Forero, 
O.G. Miranda, M. Tórtola, J.W.F. Valle 1612.07377, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 

1605.08774, A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823…

M. Blennow, EFM,
J. Hernandez-Garcia, 

J. Lopez-Pavon 
X. Marcano and 
D. Naredo-Tuero 

2306.01040
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Looking for NR: Non-Unitarity

See also P. Langaker and D. London 1988; S. M. Bilenky and C. Giunti hep-ph/9211269 ; E. 
Nardi, E. Roulet and D. Tommasini hep-ph/9503228; D. Tommasini, G. Barenboim, J. Bernabeu

and C. Jarlskog hep-ph/9503228; S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-
ph/0607020; S. Antusch, J. Baumann and EFM 0807.1003; D. V. Forero, S. Morisi, M. Tortola, 

and J. W. F. Valle 1107.6009; S. Antusch and O. Fischer 1407.6607; F.J. Escrihuela, D.V. Forero, 
O.G. Miranda, M. Tórtola, J.W.F. Valle 1612.07377, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 

1605.08774, A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823…

LFC LFV95% CL

2 s preference
for mixing with
electrons ~0.03

M. Blennow, EFM,
J. Hernandez-Garcia, 

J. Lopez-Pavon
X. Marcano and 
D. Naredo-Tuero 

2306.01040



A new physics scale

Collider
searches

Precision
electroweak
and flavour

violation

eV keV MeV GeV TeV

Many bounds from LEP and LHC 
on LFV but more interestingly
LNV signatures
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LNV at colliders

If the HNLs are pseudoDirac, LNV signals should be very supressed

But, if DM >> G they will oscillate many times between the two states

before decaying, breaking the coherence and the supression of LNV
S. Antusch, E. Cazzato, and O. Fischer 1709.03797; M. Drewes, J. Klarić, and P. Klose 
1907.13034; J. Gluza and T. Jeliński 1504.05568; P. S. Bhupal Dev and R. N. Mohapatra 
1508.02277; G. Anamiati, M. Hirsch, and E. Nardi 1607.05641; A. Das, P. S. B. Dev, and R. 
N. Mohapatra 1709.06553
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If the HNLs are pseudoDirac, LNV signals should be very supressed

But, if DM >> G they will oscillate many times between the two states

before decaying, breaking the coherence and the supression of LNV

EFM, X. Marcano and D. Naredo-Tuero 2209.04461

Could allow to distinguish between low
scale Seesaw models!
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Maybe a symmetry can explain the DM ~ 10-7eV needed for Shi-Fuller?



LNV at colliders

If the HNLs are pseudoDirac, LNV signals should be very supressed

But, if DM >> G they will oscillate many times between the two states

before decaying, breaking the coherence and the supression of LNV

EFM, X. Marcano and D. Naredo-Tuero 2209.04461

Large values of DM need fine tunned cancellations to keep n mass low. 



A new physics scale

Fixed
target 

searches

Collider
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Precision
electroweak
and flavour

violation

eV keV MeV GeV TeV



Looking for NR: Beam Dumps

Sensitivity of DUNE ND to NR

P. Coloma, EFM, M. González-López, J. Hernández-García arXiv:2007.03701

A FeynRules file with interactions between mesons and NR (HNLs) is provided

See also: P. Ballett, T. Boschi, and S. Pascoli arXiv:1905.00284

J. M. Berryman, A. de Gouvea, P. J. Fox, B. J. Kayser, K. J. Kelly, and J. L. Raaf arXiv:1912.07622

I. Krasnov arXiv:1902.06099; M. Breitbach, L. Buonocore, C. Frugiuele, J Kopp, L. Mittnacht
arXiv:2102.03383 ; A. M. Abdullahi, P. Barham Alzas et al. arXiv:2203.08039



Looking for nR: Beam Dumps

P. Coloma, J. Lopez-Pavon, L. Molina-Bueno and S. Urrea 2304.06765
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violation
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Short and long
baseline

n oscillations
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All together:

EFM, M. González-López, J. Hernández-García, M. Hostert, J. López-Pavón arXiv:2304.06772 
https://github.com/mhostert/Heavy-Neutrino-Limits

See also: P. D. Bolton, F. F. Deppisch and P. S. B. Dev arXiv:1912.03058
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Looking for NR

And beyond mixing, HNLs interactions through EFT (nSMEFT):

EFM, M. González-López, J. Hernández-García, M. Hostert, J. López-Pavón arXiv:2304.06772 
https://github.com/mhostert/Heavy-Neutrino-Limits

https://github.com/mhostert/Heavy-Neutrino-Limits
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Cosmology

A. C Vincent, EFM, P. Hernandez, M. Lattanzi and O. Mena arXiv:1408.1956
See also K. Langhoff, N. J. Outmezguine, and N. L. Rodd arXiv:2209.06216  
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Conclusions

◼ Neutrino masses and mixings imply new BSM physics 

◼ The simplest extension, right-handed neutrinos, already
imply a lot of new phenomenology to search for:

◼ Non-unitarity, searches at colliders, beam dumps, 
oscillations, cosmology, 0nbb,…

◼ Also offers conexions to other open problems of the SM

◼ Baryogenesis, Dark Matter, Flavour puzzle...



Non-unitarity and MW from CDF

M. Blennow, P. Coloma, EFM, M-González-Lopez Phys.Rev.D 106 (2022) 7
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J = 2.8·10-5 too small!

M. B. Gavela, P. Hernandez, M. Lozano, J. Orloff, O. Pene and C. Quimbay: 
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Not a 1st order pase transition, only crossover
K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov hep-ph/9605288



Links with other open problems: baryogenesis

If the low-E Seesaw mass is also dynamical:

New sources of CPV in the Yukawas

and 𝜙 could induce a 1st order pase transition:
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Links with other open problems: baryogenesis

If the low-E Seesaw mass is also dynamical:

New sources of CPV in the Yukawas

and 𝜙 could induce a 1st order pase transition:

EFM, J. López-Pavón, T. Ota, S. Rosauro-Alcaraz 2007.11008

𝑌𝜈 ഥ𝑁𝑅 ෩𝐻
†𝐿𝐿 + 𝑌𝑁 ഥ𝑁𝑅𝜙𝑁𝐿 + 𝑉 𝜙,𝐻 → 𝑚𝐷

ഥ𝑁𝑅𝜈𝐿 +𝑀𝑁
ഥ𝑁𝑅𝑁𝐿 +𝑉 𝜙,𝐻

Present bounds on the heavy-
active mixing allow for
enough CPV to generate the 
Baryon assymmetry if the vev
profile during the phase
transition is favourable

No edm 
from Barr-Zee



Looking for NR: Non-Unitarity

PMNSUN −= )1( Or with =− )1( 

Triangular structure more convinient for oscillations
Z.-z. Xing 0709.2220 and 1110.0083. 

F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, and J. W. F. Valle 1503.08879.

Dictionary

M. Blennow, P.Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1609.08637



Probing the Seesaw: Non-Unitarity

All constraints are for the limit of very heavy extra neutrinos
OK for all processes except maybe the loop LFV

Cancellations of these diagrams explored in: 
D.V. Forero, S. Morisi, 

M. Tortola, J.W.F. Valle 1107.6009
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Cosmology and lab constraints

A. C Vincent, EFM, P. Hernandez, M. Lattanzi and O. Mena arXiv:1408.1956 

At intermediate

scales very strong

constraints from

direct searches

and cosmology
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Just replace U by N

𝑃𝛼𝛽 𝐿 =෍

𝑖,𝑗

𝑁𝛽𝑖𝑁𝛼𝑖
∗ 𝑁𝛼𝑗𝑁𝛽𝑗

∗ 𝑒
−Δ𝑚𝑖𝑗

2 𝐿

2𝐸

At L=0,  Pb ≠ db this “zero distance effect” can be striking 

and is usually the source of the most stringent constraints

Careful!! These “probabilities” are not observables…

…they don’t even add up to 1, not really probabilities!

The “zero distance effect” will also be present in the data 
used to estimate the flux and cross section
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The real observable is the number of events

The measured probability is the ratio of the events
over the prediction from the flux and cross section in 
absence of oscillations

For instance, if the prediction for Pe comes from near

detector data on P :

Notice that, in general, this is different to normalizing as 

෠𝑃𝜇𝑒 𝐿

ȁ ۧ𝜈𝛼 =
𝑁𝛼𝑖ȁ ۧ𝜈𝑖

𝑁𝑁†
𝛼𝛼

M. Blennow, P.Coloma, EFM, J. Hernandez-
Garcia and J. Lopez-Pavon arXiv:1609.08637
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But these are more efficiently constraint
from LFU bounds, from instance p decay
ratios, no need to also detect the n… 
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Looking for NR: Non-Unitarity

It has become common to call them:

But they all involve

it’s where the sensitivity comes from… 

So they are all equally “direct” and they all have a neutrino
and a charged lepton…

“Indirect” or “charged leptons” “Direct” or “neutrinos”

W 
-
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Looking for NR: Non-Unitarity

Which one is more robust/model-independent?

“Indirect” or “charged leptons” “Direct” or “neutrinos”

Introducing an NSI 
operator with u and d 
quarks the zero
distance effect could
be cancelled
They also come from
zero-distance effect…

GF from  decay
compared to from MW , 
measurents of sinqw at 
different energies
(Moller, colliders) and 
b and K decays. Very

different physics! 

But in the literature the “neutrino” bounds are assumed to be more robust…



Non-Unitarity vs oscillations

It has become common to call them:

“Indirect” or “charged leptons” “Direct” or “neutrinos”

From C. Argüelles et al Snowmass Whitepaper arXiv:2203.10811 and M. Blennow, EFM, J. 

Hernandez-Garcia, X. Marcano and D. Naredo-Tuero and J. Lopez-Pavon in preparation

Oscillations (from zero distance
effects in disappearance, 90%)



A new physics scale

Precision
electroweak
and flavour

violation

eV keV MeV GeV TeV

Short and long
baseline

n oscillations

If light enough the new sterile
neutrinos will be produced and 
participate in oscillation
processes.



Steriles vs NU

“Heavy n” Non-Unitarity
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= bbb

M. Blennow, P. Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon arXiv:1609.08637

C. S. Fong, H. Minakata and H. Nunokawa arXiv:1609.08623 
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If oscillations too

fast to resolve and only see

average effect

M. Blennow, P. Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1609.08637

C. S. Fong, H. Minakata and H. Nunokawa 1609.08623 
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At leading order “heavy” non-unitarity and avergaed-out
“light” steriles have the same impact in oscillations

M. Blennow, P. Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon arXiv:1609.08637
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Bounds from a global fit to flavour and Electroweak precision 
data

Non-Unitarity vs oscillations

with

From C. Argüelles et al Snowmass Whitepaper arXiv:2203.10811 and M. Blennow, EFM, J. 

Hernandez-Garcia, X. Marcano and D. Naredo-Tuero and J. Lopez-Pavon in preparation
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Non-unitarity at DUNE

M. Blennow, P. Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon arXiv:1609.08637

The far detector would suffer from degeneracies but they are lifted with
present bounds



Non-unitarity at DUNE

P. Coloma, J. Lopez-Pavon, S. Rosauro-Alcaraz and S. Urrea arXiv:2105.11466

The posible improvements by the near detector depend critically on the level
of systematic uncertainties, particularly affecting the shape of the spectra
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If at the near detector or in the data to estimate

the flux and cross section, the zero distance effect is

recovered and bounds apply
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