

Università degli Studi di Padova

The JUNO experiment: status and physics potential

Neutrino Oscillation Workshop 2024 @ Otranto

Andrea Serafini on behalf of the JUNO collaboration

andrea.serafini@pd.infn.it

Where are we now?

Where are we now? Martinucci Laboratorio Otranto Porto di Otranto CENTRO STORICO Vittoria Resort Pool & ranto **NOW 2024 conference** Torre del Sern **Basiliani SPA Hotel** Agriturismo Da Marta 📟 Otranto (Lecce, Italy) Oasy Park Oasi Basiliani - CDSHotels Zona Artigianale **Just kidding!** Let me be more specific.

Where are we now? (in the neutrino field)

Eligio Lisi <u>slides</u> @ Neutrino 2024

Five pillars have been raised and will be further refined: δm^2 , $|\Delta m^2|$, θ_{12} , θ_{13} , θ_{23} (θ_{23} still a bit unstable, consolidation will take some time...)

Two more pillars are under construction: mass ordering, CP phase

... and exciting plans + guaranteed results for decades!

Each pillar supported by ≥2 classes of expts → Learn from ≥2 datasets via joint/global analyses

[Tortola] Solar sector: θ_{12} , θ_{13} , Δm^2_{21} Atmosp

Atmospheric sector: θ_{23} , θ_{13} , Δm^{2}_{31} , δ

Reactor sector: θ_{13} , Δm^2_{31}

Accelerator sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Where are we now? (in the neutrino field)

Eligio Lisi <u>slides</u> @ Neutrino 2024

Five pillars have been raised and will be further refined: δm^2 , $|\Delta m^2|$, θ_{12} , θ_{13} , θ_{23} (θ_{23} still a bit unstable, consolidation will take some time...)

Two more pillars are under construction: mass ordering, CP phase

... and exciting plans + guaranteed results for decades!

Each pillar supported by ≥2 classes of expts → Learn from ≥2 datasets via joint/global analyses

[Tortola] Solar sector: θ_{12} , θ_{13} , Δm^2_{21} Atmospheric sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Reactor sector: θ_{13} , Δm^2_{31}

Accelerator sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Pillars in ν physics

Where are we now? (in the neutrino field)

Eligio Lisi <u>slides</u> @ Neutrino 2024

Five pillars have been raised and will be further refined δm^2 , $|\Delta m^2|$, θ_{12} , θ_{13} , θ_{23} , $(\theta_{23} \text{ still a bit unstable, consolidation will take source under the source of the second states of th$

Two more pillars are under construction mass ordering, CP phase

... and exciting plans + guaranteed results for decades:

Expt frontiers with strong impact on theory/pheno

[Tortola, global analysis] [Soler, Brunner, Yanez, atmos. analysis] [Ding, flavor symmetries] [Worcester, LBL pheno] [Menendez, Guenette, *0vββ* pheno] [Maneira, solar *v*] [Expt. talks...] Each pillar supported by ≥2 classes of expts → Learn from ≥2 datasets via joint/global analyses

[Tortola] Solar sector: θ_{12} , θ_{13} , Δm^2_{21} Atmospheric sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Accelerator sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Reactor sector: θ_{13} , Δm^2_{31}

7

The Jiangmen Underground Neutrino Observatory

JUNO recipe: $\overline{\nu}_e$ from reactors **as source**, oscillated $\overline{\nu}_e$ **detected** via Inverse Beta Decay (IBD) \rightarrow sensitive to \mathbf{P}_{ee}

JUNO recipe: $\overline{\nu}_e$ from reactors **as source**, oscillated $\overline{\nu}_e$ **detected** via Inverse Beta Decay (IBD) \rightarrow sensitive to \mathbf{P}_{ee}

Neutrino Mass Ordering (NMO)

NMO sensitivity manifests as an energy dependent phase

→ JUNO sits at the **baseline maximizing NMO sensitivity**

JUNO recipe: $\overline{\nu}_e$ from reactors **as source**, oscillated $\overline{\nu}_e$ **detected** via Inverse Beta Decay (IBD) \rightarrow sensitive to \mathbf{P}_{ee}

TAO

Dava Bav

JUNO

KamLAND

JUNO recipe: $\overline{\nu}_e$ from reactors **as source**, oscillated $\overline{\nu}_e$ **detected** via Inverse Beta Decay (IBD) \rightarrow sensitive to \mathbf{P}_{ee}

Neutrino Mass Ordering (NMO)

NMO sensitivity manifests as an energy dependent phase

→ JUNO sits at the **baseline maximizing NMO sensitivity**

Oscillation parameters

 $\bar{\nu}_{e} \text{ survival probability: } P_{ee} = \mathbf{1} - P_{21} - P_{31} - P_{32}$ $P_{21} = \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$ $P_{31} = \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{31}$ $P_{32} = \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{32}$

 $\Delta m_{ij}^2 L$

JUNO recipe: $\overline{\nu}_e$ from reactors **as source**, oscillated $\overline{\nu}_e$ **detected** via Inverse Beta Decay (IBD) \rightarrow sensitive to \mathbf{P}_{ee}

Neutrino Mass Ordering (NMO)

NMO sensitivity manifests as an energy dependent phase

→ JUNO sits at the **baseline maximizing NMO sensitivity**

Oscillation parameters

$$\bar{\nu}_{e} \text{ survival probability: } P_{ee} = \mathbf{1} - P_{21} - P_{31} - P_{32}$$
SLOW
$$P_{21} = \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$$

$$P_{31} = \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{31}$$

$$P_{32} = \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{32}$$

 $\Delta m_{ij}^2 L$

JUNO recipe: $\overline{\nu}_e$ from reactors **as source**, oscillated $\overline{\nu}_e$ **detected** via Inverse Beta Decay (IBD) \rightarrow sensitive to \mathbf{P}_{ee}

Neutrino Mass Ordering (NMO)

NMO sensitivity manifests as an energy dependent phase

→ JUNO sits at the **baseline maximizing NMO sensitivity**

Oscillation parameters

$$\bar{\nu}_{e} \text{ survival probability: } P_{ee} = \mathbf{1} - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$$

$$P_{31} = \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{31}$$

$$P_{32} = \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{32}$$

JUNO recipe: $\overline{\nu}_e$ from reactors **as source**, oscillated $\overline{\nu}_e$ **detected** via Inverse Beta Decay (IBD) \rightarrow sensitive to \mathbf{P}_{ee}

Neutrino Mass Ordering (NMO)

NMO sensitivity manifests as an energy dependent phase

→ JUNO sits at the baseline maximizing NMO sensitivity

Oscillation parameters

 $\bar{\nu}_{e} \text{ survival probability: } P_{ee} = 1 - P_{21} - P_{31} - P_{32}$ $P_{21} = \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$ $P_{31} = \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{31}$ $P_{32} = \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{32}$

Main ingredients for the JUNO NMO recipe

High energy resolution

- ightarrow high light yield
- ightarrow good photocoverage
- \rightarrow high performances electronics

(goal <3% @ 1MeV) ~1600 PE/MeV 78% 1 GHz FADC, noise <10% @1 PE

20 kton \rightarrow ~60 IBD evts/day *

<0.5% failure/6 years

lot of light

High precision measurement

- \rightarrow high statistics (large target mass)
- \rightarrow long exposure (reliable electronics)
- \rightarrow low background (overburden + radiopurity + veto) ~4 bkg evts/day

Q

High accuracy

- ightarrow energy scale systematics (calibrations)
- \rightarrow understanding of reference spectrum (TAO)

< 1% uncertainty on energy scale < 2% shape uncertainty

A lot of events

detec

now o

Central detector (CD)

arXiv: 2311.17314 (2023)

+ 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *

*before efficiency cuts

Central detector (CD)

arXiv: 2311.17314 (2023)

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:

 \rightarrow 78% photocoverage, ~1600 PE/MeV \rightarrow high resolution

 \rightarrow dual calorimetry L-PMTs / S-PMTs \rightarrow self calibration

Central detector (CD)

arXiv: 2311.17314 (2023)

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field **compensation coils**

→ Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Central detector (CD) arXiv: 2311.17314 (2023)

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field compensation coils
- → Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Instrumented Water Pool (WP)

• 35 kton of high pure water as shield

Central detector (CD) arXiv: 2311.17314 (2023)

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field compensation coils
- → Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Instrumented Water Pool (WP)

- 35 kton of high pure water as shield
- 2400 20" L-PMTs for active veto

Central detector (CD) arXiv: 2311.17314 (2023)

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field compensation coils
- → Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Instrumented Water Pool (WP)

- 35 kton of high pure water as shield
- 2400 20" L-PMTs for active veto

Central detector (CD) arXiv: 2311.17314 (2023

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field compensation coils

→ Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Instrumented Water Pool (WP)

- 35 kton of high pure water as shield
- 2400 20" L-PMTs for active veto

Top Tracker (TT) NIMA 1057 168680 (2023)

• **3× plastic** scintillator **layers** (coverage ~30% of muons)

*before efficiency cuts

Central detector (CD) arXiv: 2311.17314 (2023)

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field compensation coils
- → Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Instrumented Water Pool (WP)

- 35 kton of high pure water as shield
- 2400 20" L-PMTs for active veto

Top Tracker (TT) NIMA 1057 168680 (2023)

• 3× plastic scintillator layers (coverage ~30% of muons)
 → CD+WP+TT muon veto strategy → 92% efficiency

Central detector (CD) arXiv: 2311.17314 (2023

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field compensation coils
- → Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Instrumented Water Pool (WP)

- 35 kton of high pure water as shield
- 2400 20" L-PMTs for active veto

Top Tracker (TT) NIMA 1057 168680 (2023)

• 3× plastic scintillator layers (coverage ~30% of muons)
 → CD+WP+TT muon veto strategy → 92% efficiency

Calibration system JHEP 03 (2021) 004

>6 sources + laser + calibration system

*before efficiency cuts

Central detector (CD) arXiv: 2311.17314 (2023)

- 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field compensation coils

→ Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Instrumented Water Pool (WP)

- 35 kton of high pure water as shield
- 2400 20" L-PMTs for active veto

Top Tracker (TT) NIMA 1057 168680 (2023)

• 3× plastic scintillator layers (coverage ~30% of muons)
 → CD+WP+TT muon veto strategy → 92% efficiency

Calibration system JHEP 03 (2021) 004

>6 sources + laser + calibration system

→ energy-scale systematics below 1% *before efficiency cuts

Central detector (CD)

arXiv: 2311.17314 (2023)

- + 20 kton of LAB scintillator \rightarrow ~60 IBD evts/day *
- 17612 20" L-PMTs and 25600 3" S-PMTs:
 → 78% photocoverage, ~1600 PE/MeV → high resolution
 → dual calorimetry L-PMTs / S-PMTs → self calibration
- Earth's magnetic field **compensation coils**
- → Predicted 2.95% resolution @ 1 MeV arXiv 2405.17860

Instrumented Water Pool (WP)

- 35 kton of high pure water as shield
- 2400 20" L-PMTs for active veto

Top Tracker (TT) NIMA 1057 168680 (2023)

- **3× plastic** scintillator **layers** (coverage ~30% of muons)
- \rightarrow CD+WP+TT muon veto strategy \rightarrow 92% efficiency

Calibration system JHEP 03 (2021) 004

>6 sources + laser + calibration system

→ energy-scale systematics below 1% *before efficiency cuts

The Central Detector status

Stainless Steel (SS) structure completed (except bottom 4 layers, waiting for acrylic)

Acrylic panel production completed

- <1 ppt U/Th/K contamination in production
- high transparency reached (>96%) low surface contamin. (<5 ppt U/Th in 50 µm)
- Acrylic vessel construction on-going
 - 17/23 layers finished

The Photo Multiplier Tubes status

JUNO employs a combination of 20" L-PMTs and 3" S-PMTs → calibrate charge non-linearity systematics

✓ All **PMTs** tested and **characterized**:

NIM.A 1005 165347 (2021) Eur.Phys.J.C 82 12, 1168 (2022)

Dimension	Туре	Number	Phot. Det. Eff.	Dark Noise	Transit time spread (1σ)
20" L-PMT	MCP-PMT (NNVT)	15,012	30.1%	31.2 kHz	7.0 ns
	Dynode PMT(Hamamatsu)	5,000	28.5%	17.0 kHz	1.3 ns
3" S-PMT	Dynode PMT (HZC XP72B22)	25,600	24.9%	0.5 kHz	1.6 ns

- All PMTs installed in waterproof potting (failure rate <0.5% / 6 years)
- Implosion protection system (acrylic top + steel bottom) developed and produced JINST 18,P02013 (2023)
- PMTs under installation and testing following central detector commissioning

The liquid scintillator purification status

JUNO liquid scintillator **cocktail**: LAB + 2.5 g/L PPO + 3 mg/L bis-MSB. Aiming at: \rightarrow Attenuation length: LAB > 24m, LS > 20 m \rightarrow U/Th for NMO < 10⁻¹⁵ g/g, aiming at 10⁻¹⁷ g/g for solar and future 0v $\beta\beta$

- Liquid scintillation purification plant completed and commissioned
- ✓ All 60 ton **PPO delivered** (U/Th <0.1 ppt), **Bis-MSB almost complete** (U/Th <5 ppt)
- ✓ OSIRIS radiopurity monitoring **pre-detector** (20ton LS) ready, **up and running**
- Filling plan developed, waiting for detector construction

The liquid scintillator purification s

JUNO liquid scintillator cocktail: LAB + 2.5 g/L PPO + 3 mg/L bis- \rightarrow Attenuation length: LAB > 24m, LS > 20 m \rightarrow U/Th for NMO < 10⁻¹⁵ g/g, aiming at 10⁻¹⁷ g/g for solar and future

- Liquid scintillation purification plant completed and comn
- All 60 ton PPO delivered (U/Th <0.1 ppt), Bis-MSB almost cor
- ✓ OSIRIS radiopurity monitoring pre-detector (20ton LS) ready
- Filling plan developed, waiting for detector construction

The JUNO-TAO detector status

Accurate and precise reference spectrum → boost JUNO in parameters and NMO

- Conversion and ab-initio reactor spectrum models affected by large uncertainties
- Models/data (e.g. Daya Bay) inconsistent, current data has low energy resolution
- → Taishan Antineutrino Observatory (TAO) arXiv:2005.08745 (2020)

TAO main features:

- 2.8 ton of LS with Gd
- ~10 m² (94%) of SiPM working at -50° C
 → dark noise to <100 Hz/mm²
- <**2%** / $\sqrt{E \ [MeV]}$
- ~1000 IBD evts/day * *after efficiency cuts

The JUNO-TAO detector status

Accurate and precise reference spectrum → boost JUNO in parameters and NMO

- Conversion and ab-initio reactor spectrum models affected by large uncertainties
- Models/data (e.g. Daya Bay) inconsistent, current data has low energy resolution
- → Taishan Antineutrino Observatory (TAO) arXiv:2005.08745 (2020)

TAO main features:

- 2.8 ton of LS with Gd
- ~10 m² (94%) of SiPM working at -50° C
 → dark noise to <100 Hz/mm²
- <**2%** / $\sqrt{E \ [MeV]}$
- ~1000 IBD evts/day * *after efficiency cuts

- Detector assembled at IHEP: ~100
 SiPM tiles/readout (out of 4100 in total)
 - Readout,
 temperature
 uniformity and
 stability tested.

 Disassembling, to be re-installed in the Taishan Nuclear Power Plant in 2024

The JUNO physics program

Check out all JUNO contributions at NOW 2024:

155. JUNO sensitivity to mass ordering and mixing parameters
Vanessa Cerrone (Istituto Nazionale di Fisica Nucleare)
04/09/2024, 16:00
Session I (parallel) - Sta...

192. JUNO potential for SN, solar and atmospheric neutrinos
Marco Malabarba (Istituto Nazionale di Fisica Nucleare)
07/09/2024, 18:10
Session IV (parallel) Par...

170. Nucleon decays at JUNO
Wan-lei Guo (Institute of High Energy Physics, Chinese Academy of Sciences)
06/09/2024, 18:50
Session II (parallel) Beyo...

159. Geoneutrino physics at JUNO
Fernanda Rodrigues (Institute of High Energy Physics, Beijing, China)
04/09/2024, 17:50
Session I (parallel) - Sta...

Neutrinos as a probe

The JUNO physics program

Check out all JUNO contributions at NOW 2024:

Neutrinos as a probe

Determination of Neutrino Mass Ordering (NMO)

JUNO NMO sensitivity: 3σ (reactors only) in 6.5 y (with 26.6 GW_{th}) \rightarrow 7.1 y with 11/12 reactor duty factor

- Combination reactor + atmospheric neutrino analysis ongoing \rightarrow further improve NMO sensitivity
- Combination with external Δm_{31}^2 long baseline experiments constraint $\rightarrow \frac{1}{2}$ enhanced NMO sensitivity 37

Subpercent precision on oscillation parameters

Huge **leap** in **precision** for mass splittings and θ_{12} \rightarrow **synergies** in the neutrino field!

- In <2 years θ_{12} , Δm_{21}^2 , Δm_{31}^2 precision → unprecedented <1% level
- In 6 years θ_{12} , Δm^2_{21} , Δm^2_{31} precision \rightarrow 0.5%, 0.3% and 0.2%

	PDG 2024	Global fits	JUNO 6 years
$\sin^2 \theta_{13}$	3.2%	2.6%	12%
$\sin^2 \theta_{12}$	4.2%	3.9%	0.5%
Δm^2_{21}	2.4%	2.8%	0.3%
Δm_{31}^2	1.1%	1.1%	0.2%

Atmospheric neutrinos and synergy with NMO

JUNO **first experiment** to study **atmospheric** neutrino oscillation with **liquid scintillator**:

NMO via matter effects requirements:

→ Good flavor separation (traditional + ML)

 \rightarrow Good track reconstruction

Solar neutrinos in JUNO

JUNO is an excellent solar neutrino detector

via elastic scattering.

Improve current measurements: (with bkg <= 10⁻¹⁶ g/g)

- → pep and ⁷Be better than Borexino in ~2y
- → CNO better than Borexino in ~6y (with no constraint on ²¹⁰Bi)

Solar neutrinos from ⁸B

JUNO capable to **detect** ⁸**B** in a **model independent** way: Astrophys. J. 965.2: 122 (2024)

→ combination of CC+NC on ¹³C +ES

 \rightarrow independent measurement of $heta_{12}$, Δm^2_{21}

Supernovae and diffuse supernovae background

A supernovae observer:

- \rightarrow sensitive to all flavors with CC + ES
- \rightarrow perfect for **multi-messenger**
 - pre-supernova (~hours) neutrinos → alert!
 - supernova explosion (~10¹ seconds) → telescope

Discovering diffuse supernovae bkg.:

- → pulse shape discr. for S/B ratio 2→3.5
- \rightarrow 3 σ (>5 σ) in 3y (10y) with reference model

Geoneutrinos

Geoneutrinos provide precious information about our planet composition and formation. JUNO will have:

→ 400 evts/year largest detection rate for geoneutrinos

- \rightarrow unprecedented precision ~8% in 10y
- \rightarrow study under active development!

 $^{238}U \rightarrow ^{206}Pb + 8a + 6e^{-} + 6\bar{\nu}_{e} + 51.7 \text{ MeV}$ $^{232}Th \rightarrow ^{208}Pb + 6a + 4e^{-} + 4\bar{\nu}_{e} + 42.8 \text{ MeV}$ $^{40}K \rightarrow ^{40}Ca + e^{-} + \bar{\nu}_{e} + 1.32 \text{ MeV}$ Below threshold for IBD
Heat

Preliminary expected sensitivity [%] Th/U Th/U free fixed U+Th U+Th U U/Th Time Th ~22 1v ~10 ~35 ~40 ~18 6v ~70 10v ~8 ~30 ~35 ~15 ~55

Nucleon decay searches

JUNO has competitive **sensitivity** to **nucleon decay** searches **exploiting**:

- **1. proton decay:** $p \to \overline{\nu} K^+$ (>9.6 × 10³³ y)
- 2. neutron decay: $n \rightarrow inv$ (>5.0 × 10³¹ y) $nn \rightarrow inv$ (>1.4 × 10³² y)

90% CL in 10 years of data taking (200 ton yr)

→ signal signature: 3-fold time coincidence:

- 1. proton decay:
- 2. neutron decay:

$$K^{+} \rightarrow \mu^{+} \rightarrow e^{+}$$

$$^{11}C^{*} \rightarrow n + ^{10}C(\beta^{+})$$

$$^{11}C^{*} \rightarrow n + \gamma + ^{10}C(\beta^{+})$$

$$^{10}C^{*} \rightarrow n + ^{9}C(\beta^{+})$$

$$^{10}C^{*} \rightarrow n + p + ^{8}B(\beta^{+}\alpha)$$

Conclusions

JUNO will be the **largest liquid scintillator** detector ever built (**20 kton** of liquid scintillator)

- → construction is on-going
- → start of **data taking** foreseen in **2025**

We aim high:

- \rightarrow NMO determination at 3σ in 6.5 y × 26.6 GW_{th}
- → World-leading <1% precision in θ_{12} , Δm_{21}^2 and Δm_{31}^2 in <2y
- → Synergies and discoveries from other neutrino sources (solar, geo, atmospheric, supernovae) and more (proton decay)!

Check out our parallel talks at NOW 2024!

Since 2014, >700 collaborators from 74 institutions in 17 countries/regions