T2K and T2K+SK Oscillation Analyses

Daniel Barrow

daniel.barrow@physics.ox.ac.uk

NOW 2024 - Plenary Talk

3rd September 2024

On behalf of the T2K Collaboration

NOW 2024 Neutrino Oscillation Workshop

Neutrino Oscillations

Long baseline accelerator (LBL) experiments:

- <u>Make</u> the most precise measurements of θ_{23} , $|\Delta m_{32}^2|$
- Sign of $|\Delta m_{32}^2|$ and δ_{CP} still unknown and accessible to LBL

Accelerator Neutrino Oscillations

Example oscillation probability for T2K:

- Baseline, L = 295 km
- $\delta_{\rm CP}$ modifies neutrino/antineutrino appearance $(v_{\mu} \rightarrow v_{e})$ probability:
 - Circular modulation over 2π period
 - Asymmetric effect

- Disappearance probability $(v_{\mu} \rightarrow v_{\mu})$: sin²2 θ_{23} modulates amplitude
 - Frequency of oscillation ~ $|\Delta m^2_{23}|$

T2K Experiment

High intensity neutrino(antineutrino) beam produced at **J-PARC**:

Use Near and Far detector

T2K Collaboration

Large collaboration: ~560 members from 74 institutes

- Oscillation analysis (this talk)
- Joint analyses with SK (this talk) and NOvA (see L. Kolupaeva talk)
- Cross-section measurements (see L. Bathe-Peters' talk)
- Detector R&D and upgrades (see L. Magaletti's talk)

Beamline

30 GeV proton beam extracted onto graphite target:

• p+C interactions produce hadron beam (π^{\pm} and K^{\pm})

Hadrons focused by 3 electromagnetic horns:

- Focusing π^+ produces v_u via $\pi^+ \rightarrow \mu^+ + v_u$
- Changing horn current produces antineutrino beam

Off axis technique produces narrow-band beam

Near Detector (ND280)

Measure beam spectrum and flavour composition pre-oscillation:

- 0.2T magnetic field
- Electromagnetic calorimeter to distinguish showers/tracks
- 2 Fine Grain Detectors (FGDs): Primary neutrino target
- 3 Time Projection Chambers (TPCs): Reconstruct momentum, charge and PID
- Recent upgrades (SFGD, high-angle TPCs, time of flight): Not used within analyses shown

Daniel Barrow

Super Kamiokande (SK)

Large underground 50 kton water Cherenkov detector:

- ~11k 20" PMTs in the inner detector
- ~2k 8" PMTs in the outer detector, used as veto

Doped with 0.03% Gd in 2022 for improved neutron tagging efficiency: **Not** used within analyses shown

Daniel Barrow

Oscillation Analysis Methodology

<u>Updates</u> since 2022 analysis: <u>Neutrino 2022</u>

- 10% more data in *v*-mode
- Improved SK detector systematics treatment

Daniel Barrow

 Additional selection cuts used to distinguish decay-electrons and neutrons at SK

Total Accumulated POT for Physics v-Mode Accumulated POT for Physics \overline{v} -Mode Accumulated POT for Physics v-Mode Beam Power \overline{v} -Mode Beam Power 50 B Run12 Accumulated POT ($\times 10^{20}$ 40 Beam Por 30 500 400 20 300 20010 100 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Year

Neutrino Flux and Cross Section Modelling

Flux uncertainty ~6% at peak of spectrum:

- Improved modelling of horn geometry
- External hadron production data (e.g NA61)

Dominated by CCQE interactions

- Significant 2p2h and resonant contributions
- Mis-modelling may bias neutrino energy reconstruction - <u>Near Detector constraint</u>

Daniel Barrow

ND280 Fit

22 Samples based on:

- Beam configuration
- Target (CH/H₂O)
- Number of pions, protons, photons, etc.

Daniel Barrow

SK Selections

Six samples selected at SK:

- 2 samples: μ -like and e-like in ν -mode: CCQE
- 2 samples CC1π-enhanced (2 rings or additional decay electron)
- 2 samples: μ -like and e-like in $\overline{\nu}$ -mode: CCQE

Updated detector modelling at SK:

• Significant reduction in total uncertainty after ND constraints:

Sample	Last Analysis	This Analysis
ν -mode 1R μ	3.4%	3.2%
ν-mode 1Re	5.2%	4.9%
ν -mode 2R μ	4.9%	3.9%
ν-mode 1Re1de	14.3%	6.3%
$\overline{\nu}$ -mode 1R μ	3.9%	5.0%
$\overline{\nu}$ -mode 1Re	5.8%	6.7%

Daniel Barrow

Oscillation Analysis Results

Daniel Barrow

Oscillation Analysis Results

Daniel Barrow

Joint Analyses

T2K

Two joint analyses released in 2023:

- T2K (beam) + NOvA (beam) \rightarrow See the next talk for details
- T2K (beam) + SK (atmospherics) → Arxiv 2405.12488
 - T2K data (5 samples) POT: 3.6x10²¹ <u>Eur. Phys. J. C 83, 782</u>
 - SK-IV data (18 samples) 3244 days PTEP 2019 5, 054F01

Atmospheric Oscillations in SK

SK has discriminating power of mass ordering due to resonant-induced matter effects between 2 and 10 GeV in upgoing-neutrinos [cos(zenith) < 0]:

- Enhancement of v in NO; enhancement of \overline{v} in IO
- Amplitude of effect depends on $\sin^2\theta_{23} \rightarrow \text{sensitive to } \theta_{23}$ octant
- Effect not degenerate with δ_{CP}

Atmospheric neutrino oscillation probability (normal ordering)

Motivation of T2K+SK Joint Analysis

Combining experiments should provide us with:

- Better sensitivity to oscillation parameters and mass ordering due to increased stats
- SK helps break degeneracy between $\delta_{\rm CP}$ and mass ordering in T2K
- T2K can constrain $\sin^2\theta_{23}$ better \rightarrow improve sensitivity to **mass ordering** in SK

Both experiments have overlapping energy spectrum:

Daniel Barrow

Systematics

19

Developed unified interaction model for T2K beam and SK low-energy samples

High energy: Mostly based on SK model

Same detector simulation and reconstruction software used in both experiments:

Correlated detector systematics included within joint analysis

Daniel Barrow

SK Atmospheric Samples

18 SK atmospheric samples with 3244.4 days of data taking:

Multi-GeV samples:

• Sensitive to mass ordering and θ_{23} octant

Sub-GeV samples:

• Electron CCQE-like sample normalisation sensitive to $\delta_{\rm CP}$

Upward going muons:

• Sensitive to $|\Delta m^2_{32}|$ and $\sin^2 2\theta_{23}$ due to v_{μ} disappearance

Daniel Barrow

T2K+SK Oscillation Analysis Results

Daniel Barrow

T2K+SK Oscillation Analysis Results

[Reminder: Recent T2K analysis B(NO/IO) = 3.3]

Slight preference for normal ordering:

- Bayes factor B(NO/IO) = 8.98
- Normal ordering preferred, with **p-value** for IO = **0.08**
 - Corresponds to 1.64 σ deviation assuming equal prior probabilities

Daniel Barrow

Future Plans for T2K

(See L. Magaletti's talk)

Upgraded near detector:

- High-angle TPCs
- Time of flight detectors
- New scintillator target (SFGD)

Improved efficiency for:

- Selecting muons of any angle
- Low momentum protons
- Neutron reconstruction

Future Plans for T2K

(See L. Magaletti's talk)

Upgrade installed: June 2024

Daniel Barrow

Future Plans for T2K

Daniel Barrow

Conclusion

T2K is a long baseline experiment aiming to make precise measurements of θ_{23} and Δm_{32}^2 , and looking to distinguish the **mass ordering** and **CP violation**

New **T2K** oscillation analysis presented which includes: +10% data in neutrino mode, and improved detector systematics:

- Improvement in precision of measurement consistent with previous analysis
- CP symmetry excluded at 90% CL
- Mild preference for normal ordering

Joint analyses with SK released: (See next talk for T2K+NOvA results)

• The CP-conserving value of the Jarlskog invariant is excluded with a significance varying between 1.9σ and 2.0σ depending on the analysis considered

Stay tuned for future results with high beam power and detector upgrades!

Backup Slides

Daniel Barrow

Daniel Barrow

ND Selections

New samples in neutrino mode:

T. Doyle (NuFact 2023)

- Split CC0 π sample based on presence or absence of **protons**
- Different sensitivity to nuclear effects:
 - \rightarrow Separates (q_0, q_3) peaks in Valencia 2p2h model
- Isolate $CC\pi^0$ interactions by looking for **photons** in the ECals and TPCs
- Contributions from DIS (30%), multi-pion production (20%) and resonant π^0 production (24%)
- Improves purities of other ND samples

 $\bar{\nu}$ -mode

Daniel Barrow

Neutrino Flux Uncertainties

Daniel Barrow