

MInternational UON Collider Collaboration

Muon Collider

D. Schulte

On behalf of the International Muon Collider Collaboration

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

Roma, May, 2024

Muon Collider Overview

MInternational UON Collider Collaboration

Would be easy if the muons did not decay Lifetime is $\tau = \gamma \times 2.2 \ \mu s$

Short, intense proton bunch			Ionisation cooling of muon in matter		Acceleration to collision energy		Collision
Protons prod decay into m muons are ca		produce pion to muons are captured	is which				-

D. Schulte, Muon Collider, INFN, May 2024

Motivation

New strong interest in high-energy, high-luminosity lepton collider

- Combines precision physics and discovery reach
- Application of hadron collider technology to a lepton collider

Muon collider promises **sustainable** approach to the **energy frontier**

limited power consumption, cost and land use

Technology and **design advances** in past years

reviews did not find any showstoppers

Reviews of the muon collider concept in Europe and US found no insurmountable obstacle

Identified required R&D, documented in accelerator R&D Roadmap

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

Target integrated luminosities are based on physics Increase as E_{cm²}

IMCC was founded in 2021

- Reports to CERN Council
- Anticipate it will also report to DoE and other funding agencies
- 50 full members, a few additional contributors

Incrime Incrime <t< td=""><td>Label</td><td>Begin</td><td>End</td><td>Description</td><td colspan="2">Aspirational</td><td colspan="2">Minimal</td></t<>	Label	Begin	End	Description	Aspirational		Minimal	
MCSIFE 2021 2025 Site and layouth 15.5 300 13.5 300 MCNF 2022 2025 Nettino flax minit 22.5 2.50 10. 0 0 MCMDI 202 2025 Collidering 11. 0 15.5 0.0 0.0 0.0 MCACCC 202 2025 Collidering 11. 0					[FTEy]	[kCHF]	[FTEy]	[kCHF]
MCXF 202 203 Neutrino invariantiantiantiantiantiantiantiantiantiant	MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MCADDI 2021 2025 Achine -detection interface 15 0 15 0 MCADCL CR 2022 2025 Collering 10 0 <td>MC.NF</td> <td>2022</td> <td>2026</td> <td>Neutrino flux miti-</td> <td>22.5</td> <td>250</td> <td>0</td> <td>0</td>	MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
MCADD 2021 2025 Machine-detector 15 0 15 0 MCACCLR 2022 2025 Collider ring 10 0 10 0 MCACCLR 2022 2025 Fighenergy com 11 0 10 0 MCACCLR 2022 2025 Fighenergy com 11 0 22 00 MCACCLP 2021 2025 Mona cooling sys 47 0 3.5 0 MCACCLP 2022 2026 Foton complex 26 0 3.5 0 MCACCLAI 2022 2026 Foton complex 26 0 3.5 0 MCACCLAI 2022 2026 High-feld magnes 6.5 0 5.0 0 MCAFFH 2021 2026 High-feld magnes 6.5 0 5.0 0 MCAFFH 2021 2026 Fest-ramping magnes 2.7 10.0 7.0 0 0 0 0 </td <td></td> <td></td> <td></td> <td>gation system</td> <td></td> <td></td> <td></td> <td></td>				gation system				
Interface Interface Interface Interface MCACCCR 2022 2025 Collering 0	MC.MDI	2021	2025	Machine-detector	15	0	15	0
MC-ACC-CR 2022 2025 Collidering 10 0 10 0 MC-ACC-R 2022 2025 Pighenergy components 11 0 75 0 MC-ACC-R 2022 2025 Pighenergy components 11 0 75 0 MC-ACC-R 2022 2026 Poton complex 26 0 3.5 0 MC-ACC-RL 2022 2026 Poton complex 26 0 3.5 0 MC-ACC-LAI 2022 2025 Poton complex 2.6 0 8.2 0 1.82 0 1.82 0 1.6 0 2.0 1.6 65 0 5.0 0 0.0 0 <t< td=""><td></td><td></td><td></td><td>interface</td><td></td><td></td><td></td><td></td></t<>				interface				
MC.ACC.HE 2022 2025 High-energy come plex 11 0 7.5 0 MC.ACC.MC 2021 2025 Mona cooling sys 47 0 2.2 0 MC.ACC.MC 2021 2025 Protour complex 2.6 0 3.5 0 MC.ACC.COLL 2022 2025 Callecine offeet 18.2 0 0 0 MC.ACC.ALT 2022 2025 High-field magnets 6.5 0 6.5 0 MC.HPM.HE 2022 2025 High-field magnets 6.5 0 6.5 0 MC.RF HE 2021 2025 High-field magnets 6.7 0 22.5 520 MC.RF.HE 2021 2026 Moac cooling R Ft 10.5 0 7.6 0 MC.RF.TS 2024 2026 Moac cooling R Ft 10.5 0 0 0 MC.RFL 2022 2026 Moac cooling R Ft 10.5 0.8 2.50 M	MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MCACCMC 201 2012 bits Mono cooling sty bits 7 0 2 0 NCACCMC 2022 2026 bits 56 0 3.5 0 NCACCML 2022 2026 bits bits 18.2 0 3.5 0 MCACCALT 2022 2025 bits bits 18.2 0 18.2 0 MCACCALT 2022 2025 bits bits 6.5 0 6.5 0 2.0 MCHPMIE 2022 2025 bits bits 6.5 0 6.5 0 2.0 0 MCHPMIE 2021 2026 bits bits 6.5 0 6.5 0	MC.ACC.HE	2022	2025	High-energy com-	11	0	7.5	0
MCACCMC 201 202 203 Mon cocing sys 47 0 22 0 MCACCCML 2022 2035 Poton complex 26 0 3.5 0 MCACCCML 2022 2035 Collective offeet 18.2 0 18.2 0 MCACCCML 2022 2035 Ediscine offeet 18.2 0 0 0 MCACCAUL 2022 2035 High-field magnets 6.5 0 6.5 0 MCHPMHE 2022 2035 High-field magnets 6.7 0 209 0 MCLRF 2021 2026 High-field magnets 6.5 0 7.6 209 0 MCRF 2021 2026 Mone coling RF 10.5 0 7.6 0				plex				
MC ACCD 2022 2025 Pinns 25 0 3.5 0 MC ACCCOLL 2022 2025 Collective offects 18.2 0 18.2 0 MC ACCALT 2022 2025 Pinls-more yales 11.7 0 18.2 0 MC HM LE 2022 2025 High-field magnets 6.5 0 6.5 0 5.0 0	MC.ACC.MC	2021	2025	Muon cooling sys-	47	0	22	0
ML ALCL? J02 J03 Proton complex 26 0 1.5 0 ML ALCL? J02 2025 Collective offects H82 0 H82 0 ML ALCL? J022 2025 Collective offects H82 0 H82 0 ML HPM LID 2022 2025 Hgb-feed magnets 11.7 0 0 MC HPM LID 2022 2025 Hgb-feed magnets 6.5 0 6.5 0 MC LIP MUE 2022 2026 Hgb-feed magnets 6.7 0 22.5 520 MC RF HE 2021 2026 Hgb-feed magnets 10.6 7 0 MC RF HE 2022 2026 More cooling Ret 10.6 7 0 MC RF HE 2022 2026 More cooling Ret 10.6 7 0 MC RF HE 2022 2026 More cooling Ret 10.6 0 0 0 MC RAW 2022 2026 <td< td=""><td>Manaan</td><td>0000</td><td>2026</td><td>tems</td><td>24</td><td></td><td>2.5</td><td></td></td<>	Manaan	0000	2026	tems	24		2.5	
ML.ALC.XOLI. 2022 2025 Contextus empter. 18.2 0 18.2 0 MC.ACC.ALT. 2022 2025 Hill briefs 11.7 0 0 0 MC.ACC.ALT. 2022 2025 Hill briefs 11.7 0 0 0 MC.HPM.HE. 2022 2025 High-field magnet 6.5 0 6.5 0 MC.HPM.HE. 2021 2026 Fast-ramping magnet 2.7.5 1020 2.2.5 S20 MC.RF.HE 2021 2026 Fast-ramping magnet 1.3.6 0 7 0 MC.RF.HE 2021 2026 Hast-magnet 10.3 300 0 0 MC.RF.HE 2021 2026 Hast context for the stand + test 10 300 0 0 MC.RF.TG 2022 2026 Mass conting test 10.3 0 0 MC.MOD 2022 2026 Mass conting test 10.3 120 3.8 29 <td>MC.ACC.P</td> <td>2022</td> <td>2026</td> <td>Proton complex</td> <td>26</td> <td>0</td> <td>3.5</td> <td>0</td>	MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.ALT 2022 2035 High-energy after lattice set inspace 1.1.7 0 0 MC.HPM.ID: 2022 2035 High-energy after lattice set inspace 1.5.7 0 6.5 0 MC.HPM.ID: 2022 2035 High-field system inspace 76 2700 29 0 MC.HPM.ISOL 2022 2035 High-field system inspace 76 2700 22.5 5200 MC.RF.HE 2021 2026 High-Energy com- plex RF 10.6 0 7 0 MC.RF.TS 2022 2026 Moore cooling RF in oncide 13.6 0 7 0 MC.RFITS 2024 2026 Moore cooling RF in oncide 17.7 400 4.9 100 MCADD 2022 2036 Moore cooling RF in oncide 17.7 400 4.9 100 MCADD 2022 2036 Cooling demone integration 34.1 1250 3.8 250 MC.INT 2022 2036 Cooling in de	MC.ACC.COLL	2022	2025	Collective effects	18.2	0	18.2	0
MC.RCAR1 202 2025 High-field magneth 6.5 0 6.5 MC.HFM.HE 2022 2025 High-field magneth 6.5 0 6.5 0 MC.HFM.LD 2022 2025 High-field 76 270 29 0 MC.HFM.LD 2022 2026 High-field 76 2700 29 0 MC.RF 2021 2026 High-field 76 2700 225 520 MC.RF.HE 2021 2026 Mone cooling RF 13.6 0 7 0 MC.RF.MC 2022 2026 Mone cooling RF 13.6 0 7 0 MC.MOD 2022 2026 Mone cooling test 17.7 400 4.9 100 MC.DEM 2022 2026 Cooling test 17.7 400 4.9 100 MC.DEM 2022 2026 Cooling test 17.7 400 3.8 250 MC.TAR	MCACCALT	2022	2025	across complex	11.2	0	0	0
MC.HPM.HE 2022 2035 Interferent managente 6.5 0 6.5 0 MC.HPM.BOL 2022 2035 High-field 76 2700 29 0 MC.HPM.BOL 2022 2036 High-field 76 2700 29 0 MC.FR 2021 2026 High-field 76 27.00 22.5 5200 MC.RF.HE 2021 2026 High-Energy comp 10.6 0 7.6 0 MC.RF.TC 2022 2026 Mono cooling RF in 13.6 0 7 0 MC.RFITS 2022 2026 Mono cooling test in 10 3000 0 0 MC.MOD 2022 2026 Mono cooling test in 17.7 400 4.9 100 MC.DEM 2022 2026 Cooling demono in 34.1 1250 3.8 250 MC.TAR 2022 2026 Coolination and 13 1250 13 1250 MC.TAR 2022 2026	MC.ACC.ALI	2022	2023	righ-energy aner-	11.7	0	0	0
ML FIPA INE 2022 2026 High-field 63 0 33 0 MC FIPA INE 2022 2026 High-field 76 2700 290 6 MC FIPA INE 2021 2026 High-field 76 2700 290 6 MC RF 2021 2026 High-field 76 2700 225 520 MC RF HE 2021 2026 Mone cooling RF 13.6 0 7 0 MC RFTS 2024 2026 Mone cooling RF 13.6 0 7 0 MC MOD 2022 2026 Mone cooling test 17.7 400 4.9 100 MC DEM 2022 2026 Cooling test 17.7 400 4.9 100 MC TAR 2022 2026 Cooling test 17.7 400 4.9 100 MC TAR 2022 2036 Target system 60 1405 9 250 1102 202	MCUENTE	2022	2025	Hauves	65	0	68	0
MCLR Model Local and schematis 10 100 2.0 0 MC.FR 2021 2026 Fest sampling mag. Fest system 27.5 1020 22.5 520 MC.RFHE 2021 2026 Mone cooling RF 10.6 0 7.6 0 MC.RFTS 2022 2026 Mone cooling RF 10.6 0 7 0 MC.RFTS 2022 2026 Mone cooling RF 10 3000 0 0 MC.MOD 2022 2026 Mone cooling Ret module 17.7 400 4.9 100 MC.DEM 2022 2026 Cooling denome ratio design 34.1 1250 3.8 250 MC.TAR 2022 2026 Cooling denome ratio design 13 1250 13 1250 MC.TAR 2022 2026 Cooling denome ratio design 13 120 13 1200 MC.TAR 2022 2026 Coolination and ratid scient 13 120<	MC HFM SOL	2022	2025	High-field	76	2700	20	0
MC-FR 2021 2036 Fest-ramping mag. trysfm 27.5 1020 22.5 520 MC-RF-HE 2021 2036 High Earry com- plet FF 10.6 0 7.6 0 MC-RF-HE 2022 2036 Mana cooling RF 13.6 0 7 0 MC-RFTS 2024 2036 RF lest stand + test 10 3300 0 0 MC-MOD 2022 2036 Moon cooling test 17.7 400 4.9 100 MC-DEM 2022 2036 Cooling demono 34.1 1250 3.8 250 MC-TAR 2022 2036 Cooling contanto and 13 1250 13 1250 MCINT 2022 2036 Cooling contanto 13 1250 13 1250 Imgration 45.5 11875 193 2445 2455	MC.III MISOL	2022	2020	solenoide	10	2700	29	0
MCLR PHIE Call Inter system Part File Part File Part Part <thpart< th=""> Part Part<td>MC FR</td><td>2021</td><td>2026</td><td>Fast-ramping mag.</td><td>27.5</td><td>1020</td><td>22.5</td><td>520</td></thpart<>	MC FR	2021	2026	Fast-ramping mag.	27.5	1020	22.5	520
MC.RF.HE 2021 2026 High Earcy com- pick RF 10.6 0 7.6 0 MC.RF.MC 2022 2026 Mono cooling RF 13.6 0 7 0 MC.RF.TS 2024 2026 First stand + text 10 3300 0 0 MC.MOD 2022 2026 Mono cooling text 17.7 400 4.9 100 MC.DEM 2022 2026 Cooling demono trator design 34.1 1250 3.8 250 MC.TAR 2022 2036 Cooling demono trator design 13 1250 13 1250 MC.TNT 2022 2036 Cooling demono trator design 13 1250 13 1250 MC.INT 2022 2036 Cooling demono tingration 13 1250 13 1250 MC.INT 2022 2036 Cooling demono tingration 13 1250 13 1250	mean	2021	2020	net system	27.5	1020		520
pick RF pick RF <t< td=""><td>MC.RF.HE</td><td>2021</td><td>2026</td><td>High Energy com-</td><td>10.6</td><td>0</td><td>7.6</td><td>0</td></t<>	MC.RF.HE	2021	2026	High Energy com-	10.6	0	7.6	0
MC.RFTC 2022 2026 Moon cooling RF 13.6 0 7 0 MC.RFTS 2024 2026 Revisits 10 3300 0 0 0 MC.MOD 2022 2026 Moon cooling test 17.7 400 4.9 100 MC.DEM 2022 2026 Cooling demons 34.1 1250 3.8 250 MC.TAR 2022 2026 Cooling demons 60 1405 9 252 MC.INT 2022 2026 Coolingidemons 13 1250 13 1250 MC.INT 2022 2036 Coolingidemons 445.5 11875 193 2445				plex RF				
MCRFTS 2026 RF fest stand + test cwites 10 300 0 0 MCMOD 2022 2026 Mono cooling test model 17.7 400 4.9 100 MCDEM 2022 2026 Cooling denone start design 34.1 1250 3.8 250 MCIAR 2022 2026 Cooling denone start design 60 405 9 25 MCINT 2022 2026 Coolinging denone stringgrafion 13 120 13 120 E Samm 445.5 11875 193 2445	MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
CAMDD 2022 2026 Mono cooling tests 17.7 400 4.9 100 MC.DEM 2022 2026 Cooling demons 3.41 1250 3.8 250 MC.TAR 2022 2026 Cooling demons 60 1405 9 25 MC.TAR 2022 2026 Coordination and 13 1250 13 1250 MC.INT 2022 2026 Coordination and 13 1250 13 1250 MC.INT 2022 2036 Kom 445.5 11875 193 2445	MC.RF.TS	2024	2026	RF test stand + test	10	3300	0	0
MCMOD 2022 2026 Muon cooling text 17.7 400 4.9 100 MCDEM 2022 2026 Cooling demons 34.1 1250 3.8 250 MCTAR 2022 2026 Cooling demons 34.1 1250 3.8 250 MCTAR 2022 2026 Cooling demons 13 1250 13 1250 MCINT 2022 2026 Coolination and 13 120 13 1250 131 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 131 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 1250 132 132 132 132 132				cavities				
module module<	MC.MOD	2022	2026	Muon cooling test	17.7	400	4.9	100
MCDEM 2022 D205 Cooling demono 3.4. 1250 3.8. 250 MCTAR 2022 2026 Coofination and integration 60 405 9 25 MCINT 2022 2026 Coofination and integration 13 1250 13 1250 Sum 445.5 11875 193 2445				module				
strator design strator design strator design MC.TAR 2022 Tapet system 60 1405 9 25 MC.INT 2022 2026 Coordination and 13 1250 13 1250 integration Image: Sum Additional design and the strategies of the st	MC.DEM	2022	2026	Cooling demon-	34.1	1250	3.8	250
MC.TAR 2022 2026 Target system 60 1405 9 25 MC.INT 2022 2026 Coordination and list system 13 1250 13 1250 MC.INT 2022 2026 Koordination and list system 11875 193 2445				strator design				
MC.INT 2022 202b Coordination and 13 1250 13 1250 Image: Coordination and integration Sum 445.9 11875 193 2445	MC.TAR	2022	2026	Target system	60	1405	9	25
integration Sum 445.9 11875 193 2445	MC.INT	2022	2026	Coordination and	13	1250	13	1250
Sum 445.9 11875 193 2445				integration				
				Sum	445.9	11875	193	2445

http://arxiv.org/abs/2201.07895

IMCC goals

- 10 TeV high-luminosity collider
 - Higher energies to be explored later
- Develop initial stage to start operation by 2050
 - Lower energy or luminosity
- Identify potential sites
- Implementing workplan following priorities from Roadmap

MuCol

IFIO

CERN

MoC and Design Study Partners

IT

INFN

Univ. of Malta

Mal

		Collaboratio
INFN, Univ., Polit. Torino		/
INFN, Univ. Milano	China	Sun Yat-sen University
INFN, Univ. Padova		IHEP
INFN, Univ. Pavia		Peking University
INFN, Univ. Bologna	AU	НЕРНҮ
INFN Trieste		TU Wien
INFN, Univ. Bari	ES	I3M
INFN, Univ. Roma 1		CIEMAT
ENEA		ICMAB
INFN Frascati	КО	KEU
INFN, Univ. Ferrara		Yonsei University
INFN, Univ. Roma 3	India	СНЕР
INFN Legnaro		
INEN Liniv Milano Bicocca	US	FNAL
intro, oniv. Ivinano bicocca		LBL
INFN Genova		JLAB
INFN Laboratori del Sud		Chicago
INFN Napoli		cincago

FR	CEA-IRFU
	CNRS-LNCMI
DE	DESY
	Technical University of Darmstadt
	University of Rostock
	КІТ
SE	ESS
	University of Uppsala
PT	LIP
NL	University of Twente
FI	Tampere University
LAT	Riga Technical Univers.
СН	PSI
	University of Geneva
	EPFL
EST	Tartu University
BE	Univ. Louvain

UK Research and Innovation University of Lancaster University of Southampton University of Strathclyde University of Sussex Imperial College London **Royal Holloway** University of Huddersfield University of Oxford **University of Warwick** University of Durham Iowa State University Wisconsin-Madison Pittsburg University **Old Dominion** BNL Florida State University **RICE University**

UK

US

RAL

Tennessee University

MuCol (EU co-funded)

Started March 2023, lasts until early 2027

3 MEUR from the EU, the UK and Switzerland, about 4 MEUR from the partners, CERN leads and contributes

Final deliverable is a report on the full IMCC R&D results EU officer will come on 19th June.

N	
	C

MuCol

US P5: The Muon Shot

Particle Physics Project Prioritisation Panel (P5) endorses muon collider R&D: "This is our muon shot"

Recommend joining the IMCC Consider FNAL as a host candidate US is already particpating to the collaboration

The New York Times

Particle Physicists Agree on a Road Map for the Next Decade

A "muon shot" aims to study the basic forces of the cosmos. But meager federal budgets could limit its ambitions.

AUGUST 28, 2023 | 10 MIN READ

Particle Physicists Dream of a Muon Collider

After years spent languishing in obscurity, proposals for a muon collider are regaining momentum among particle physicists

nature

SCI AM

Explore content 🖌 About the journal 🖌 Publish with us 🖌 Subscribe

nature > editorials > article

EDITORIAL | 17 January 2024

US particle physicists want to build a muon collider – Europe should pitch in

A feasibility study for a muon smasher in the United States could be an affordable way to maintain particle physics unity.

US ambition:

- Want to reach a 10 TeV parton level collisions
- Timeline around 2050
- Fermilab option for demonstator and hosting
- Reference design in a "few" years

Discussion with DoE (Regina Rameika, A. Patwa):

- DoE wants to maintain IMCC as a global collaboration
- Addendum to CERN-DoE-NSF agreement is in preparation

IMCC prepares plan B for Europe and plan A for the US in parallel

Tentative Staged Target Parameters

Target integrated luminosities

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

Need to spell out scenarios

Need to integrate potential performance limitations for technical risk, cost, power, ...

Parameter	Unit	3 TeV	TeV 10 TeV 10		10 TeV	llab
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	tbd	13	
Ν	10 ¹²	2.2	1.8	1.8	1.8	
f _r	Hz	-5	5/5	5	5	
P _{beam}	MW	5.3	14.4	14.4	14.4	
С	km	4.5	10	15	15	
	т	7	10.5	SZ	7	
ε	MeV m	7.5	7.52	7.5	7.5	
σ _E / E	%	0.1	0.1	tbd	0.1	
σ _z	mm	5	1.5	tbd	15	
β	mm	5	1.5	tbd	1.5	
3	μm	25	25	25	25	S
$\sigma_{x,y}$	μm	3.0	0.9	1.3	0.9	

Site Studies

Candidate sites CERN, FNAL, potentially others (ESS, JPARC, ...)

Study is mostly site independent

- Main benefit is existing infrastructure
- Want to avoid time consuming detailed studies and keep collaborative spirit
- Will do more later

MuCol

Some considerations are important

- Neutrino flux mitigation at CERN
- Accelerator ring fitting on FNAL site

Potential site next to CERN identified

- Mitigates neutrino flux
 - Points toward mediterranean and uninhabited area in Jura
- Detailed studies required (280 m deep)

Proton Complex and Target

5 GeV proton beam, 2 MW = 400 kJ x 5 Hz Power is at hand

ESS and Uppsala are woring on merging beam into high-charge pulses

 Indication is that 10 GeV would be preferred

D. Schulte, Muon Collider, INFN, May 2024

3

Muon Cooling Performance

MAP design achieved 55 um based on achieved fields

Can expect better hardware

Integrating physics into **RFTRACK**, a CERN simulation code with single-particle tracking, collective effects, ...

MuCol

Are developing example **cooling** cell with integration

- tight constraints
- additional technologies (absorbers, instrumentation,...)
- early preparation of demonstrator facility

L. Rossi et al. (INFN, Milano, STFC, CERN), J. Ferreira Somoza et al.

RF cavities in magnetic field

Gradients above goal demonstrated by MAP New test stand is important

- Optimise and develop the RF
- Different options are being explored
- Need funding

D. Giove, C. Marchand, Alexej Grudiev et al. (Milano, CEA, CERN, Tartu)

50 MV/m in 5 T

Be end caps

filled copper

Most complex example 12 T

Marco

HTS solenoids Ultimate field for final cooling Also consider cost

Windows and absorbers

- High-density muon beam
- Pressure rise mitigated by vacuum density
- First tests in HiRadMat

D. Schulte, Muon Collider, INFN, May 2024

Dario

-0.1

-0.4

Fast-ramping Magnet System

Efficient energy recovery for resistive dipoles (O(100MJ))

Synchronisation of magnets and RF for power and cost

H magnet

5.07 kJ/m

5.89 kJ/m

8

Window frame magnet

FNAL 300 T/s HTS magnet

Could consider using HTS dipoles for largest ring

Simple HTS racetrack dipole could match the beam requirements and aperture for static magnets Differerent power converter options investigated

Commutated resonance (novel)

Attractive new option

- Better control
- Much less capacitors

Beampipe study

Eddy currents vs impedance Maybe ceramic chamber with stripes

F. Boattini et al.

Collider Ring

MuCol High performance 10 TeV challenges:

- Very small beta-function (1.5 mm)
- Large energy spread (0.1%)
- Maintain short bunches

10 TeV collider ring in progress:

- around 16 T HTS dipoles or lower Nb₃Sn
- final focus based on HTS
- Need to further improve the energy acceptance by small factor

3 TeV:

MAP developed 4.5 km ring with Nb₃Sn

- magnet specifications in the HL-LHC range
- 5 mm beta-function

Collider Ring Technologies

MuCol

Power loss due to muon decay 500 W/m FLUKA simulation of required **shielding:** 20-40 mm tungesten shielding (about OK-safe)

- Few W/m in magnets
- No problem with radiation dose
- \Rightarrow Magnet coil radius 59-79 mm

K. Skoufaris, Ch. Carli, D. Amorim, A. Lechner, R. Van Weelderen, P. De Sousa, L. Bottura, D. Calzolari et al.

Nb3Sn at 4.5 K and 15 cm aperture Can reach ~11 T, stress and margin limited Maturity expected in 15 years OK for current 3 TeV/early 10 TeV design

Different **cooling scenarios** studied < 25 MW power for cooling possible Shield with CO₂ at 250 K (preferred) or water Support of shield is important for heat transfer Discussion on options for magnet cooling **HTS** at 20 K and 10-14 cm aperture Can reach 16-14 T, cost limited

- Factor 3 cost reduction assumed Can reach 16 T and 16 cm with more material or lower temperature Maturity takes likely >15 years
- But maybe OK in 15 years at lower performance, similar to Nb3Sn

Important timeline drivers:

Magnets

- HTS technology available for solenoids (expect in 15 years)
- Nb₃Sn available for collider ring, maybe lower performance HTS (expect in 15 years)

Staging

High performance HTS available for collider ring (may take more than 15 years)
 Muon cooling technology (expect in 15 years, with enough resources)
 Detector technologies and design (expect in 15 years))
 Size scales with energy but technology progress will help

Energy staging

• Start at lower energy (e.g. 3 TeV, design takes lower performance into account)

Luminosity staging

- Start at with full energy, but lower luminosity
- Main luminosity loss sources are arcs and interaction region
 - Can later upgrade interaction region (as in HL-LHC)

Consider reusing LHC tunnel and other infrastructures

D. Schulte, Muon Collider, INFN, May 2024

Not reuse

Marco

Dario

Daniele, Massimo

 \Rightarrow

 \Rightarrow

Could be much smaller with

improved HTS ramping magnets

Tentative Timeline (Fast-track 10 TeV)

D. Schulte, Muon Collider, INFN, May 2024

MuCol

Short-term Plan

March 2025, deliver promised ESPPU reports

- Evaluation report, including tentative cost and power consumption scale estimate
- **R&D plan**, including some scenarios and timelines

This requires to push as hard as possible with existing resources

February 2027, Fulfill EU contract

• Final deliverable is report on all R&D

Support expected US process after the ESPPU

- Likely requires Reference Design
- Demonstrator design

LDG wants to increase the momentum that we built up

• EU Roadmap continues

Continuation as attractive option for Europe and for the US

Time-critical Developments

MuCol Identified three main technologies that can limit the timeline

Muon cooling technology

- **RF test stand** to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator
 - Muon beam production and cooling in several cells

Magnet technology

- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

CDR Phase, R&D and Demonstrator Facility

MuCol

Broad R&D programme can be distributed world-wide

- Models and prototypes
 - Magnets, Target, RF systems, Absorbers, ...
- CDR development
- Integrated tests, also with beam

Cooling demonstrator is a key facility

 look for an existing proton beam with significant power

Two stage cryocooler With cryostat Thermal shield Coil support structure ulsion Tie rods for r n forces and compress SC HTS coils

M. Calviani, R. Losito, J. Osborn et al.

Different sites are being considered

- CERN, FNAL, ESS ...
- Two site options at CERN

Muon cooling module test is important

- INFN is driving the work
- Could test it at CERN with proton beam

Synergies and Outreach

Training of young people

• Novel concept is particularly challenging and motivating for them

Technologies

- Muon collider needs HTS, in particular solenoids
- Fusion reactors
- Power generators
- Nuclear Magnetic Resonance (NMR)
- Magnetic Resonance Imaging (MRI)
- Magnets for other uses (neutron spectroscopy, detector solenoids, hadron collider magnets)
- Target is synergetic with neutron spallation sources, in particular liquid metal target (also FCC-ee)
- High-efficiency RF power sources and power converter
- RF in magnetic field can be relevant for some fusion reactors
- High-power proton facility
- Facilities such as NuStorm, mu2e, COMET, highly polarized low-energy muon beams
- Detector technologies
- Al and MI

Physics

D. Schulte

Muon Collider Implementation, IAC, January 2024

;____

Conclusion

Muon collider has a compelling physics case

R&D progress is increasing confidence that the collider is a unique, sustainable path to the future

We expect that a first collider stage can be operational by 2050

- If the resources ramp up sufficiently
- If decision-making processes are efficient

The muon collider collaboration has grown since the last ESPPU

See it will grow even more

Strong synergies with other fields ranging from particle physics to societal application

Need to continue ramping up the momentum

Many thanks to the collaboration for all the work

To join contact muon.collider.secretariat@cern.ch

Reserve

D. Schulte, Muon Collider, INFN, May 2024

Recent Results: Interim Report

CERN-2023-XXX

IAC regular members:

Ursula Bassler (IN2P3, interim Chair) Mauro Mezzetto (INFN) Hongwei Zhao (Inst. of Modern Physics, IMP) Akira Yamamoto (KEK) Maurizio Vretenar (CERN) Stewart Boogert (Cockcroft) Sarah Demers (Yale) Giorgio Apollinari (FNAL)

Experts for this review

Marica Biagini (INFN) Luis Tabarez (CIEMAT) Giovanni Bisoffi (INFN) Jenny List (DESY) Halina Abramowicz (Tel Aviv) Lyn Evans (CERN)

The IAC reviewed the Interim Report and prepared an excellent report on their findings

Contents

1	Executive Summary
2	Overview of Collaboration Goals, Challenges and R&D programme
2.1	Motivation
2.2	The Accelerator Concept
2.3	Maturity and R&D Challenges
2.4	The International Muon Collider Collaboration
2.5	Description of R&D Programme until 2026
2.6	Implementation Considerations
2.7	Synergies and Outreach
3	Physics Opportunities
3.1	Exploring the Energy Frontier
3.2	Synergies and Staging
4	Physics, Detector and Accelerator Interface
4.1	Physics and detector needs
4.2	Machine-Detector Interface
4.3	Neutrino physics
5	Detector
5.1	Concepts
5.2	Performance 43
5.3	Technologies
5.4	Software and Computing: Concepts
6	Accelerator Design
6.1	Proton Complex
6.2	Muon Production and Cooling
6.3	Acceleration 63
6.4	Collider Ring
6.5	Collective Effects
7	Accelerator Technologies
7.1	Magnets
7.2	Power Converters for the muon acceleration to TeV energies
7.3	RF
7.4	Target
7.5	Radiation shielding
7.6	Muon Cooling Cell

8	Vacuum System
9	Instrumentation
10	Radiation Protection
11	Civil Engineering
12	Movers
13	Infrastructure
14	General Safety Considerations
	Synergies
1	Technologies
2	Technology Applications
3	Facilities
4	Synergies - summary
	Development of the R&D Programme
1	Demonstrator
2	RF Test Stand
3	Magnet Test Facility
4	Other Test Infrastructure required (HiRadMat,)
)	Implementation Considerations
).1	Timeline Considerations
).2	Site Considerations
).3	Costing and Power Consumption Considerations

Focus on HTS development O(10 Meur) request

Strategy and context

Material and technology

Three core components (6 MEUR)

- 40 T solenoid, 50 mm bore
- 10 T/10 MJ/300 mm solenoid
- **HTS undulator**

Test infrastructure

D. Schulte, Muon Collider, INFN, May 2024

Proposal: EuMAHTS

EuMAHTS

Short name -----

Status

В

В

В

В

В

В

В

В

В

В

В

В

В

В

В

Α

Α

А

Α

А

Α

Country

IERO

Belgium

Finland

France

France

Germany

Germany

Germany

Italy

Italy

Netherlands

Poland

Poland

Spain

Spain

Switzerland

Switzerland

Switzerland

France

Germany

Netherlands

	CERN
WP1 - Coordination and Communication	EMFL
(L. Bottura, P. Vedrine)	TAU
WP2 – Strategic Roadmap	CEA
(A. Ballarino, L. Rossi)	ESRF
WP3 – Industry Co-innovation	EUXFEL
(J.M. Perez, S. Leray)	GSI
WP4 – HTS Magnets Applications Studies	KIT
(P. Vedrine, M. Statera)	INFN
WP5 – Materials and Technologies	UMIL
(D. Bocian. A. Bersani)	UTWENTE
WP6 – 40T-class all-HTS solenoid	IFJ-PAN
(B. Bordini, P. Vedrine)	РК
WP7 – 10T/10MJ-class all-HTS solenoid	CIEMAT
(S. Sorti, C. Santini)	CSIC
WP8 – K=2 all-HTS undulator	PSI
(S. Casalbuoni, M. Calvi)	TERA-CARE
WP9 – Test Infrastructures	UNIGE
(C. Willering E. Bonoduce)	CNRS
(G. Willering, E. Beneduce)	HZDR
	RU-NWO

IMCC Organisation

Collaboration Board (ICB)

- Elected chair: Nadia Pastrone
- 50 full members, 60+ total

Steering Board (ISB)

- Chair Steinar Stapnes
- CERN members: Mike Lamont, Gianluigi Arduini
- ICB members: Dave Newbold (STFC), Mats Lindroos (ESS), Pierre Vedrine (CEA), N. Pastrone (INFN), Beate Heinemann (DESY)
- Study members: SL and deputies

Advisory Committee

Coordination committee (CC)

- Study Leader: Daniel Schulte
- Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers

Will integrated the US also in the leadership

Magnet Roadmap

Assume: Need prototype of magnets by decision process

Consensus of experts (review panel):

- Anticipate technology to be **mature in O(15 years)**:
 - HTS solenoids in muon production target, 6D cooling and final cooling
 - HTS tape can be applied more easily in solenoids
 - Strong synergy with society, e.g. fusion reactors
 - Nb₃Sn 11 T magnets for collider ring (or HTS if available): 150mm aperture, 4K
- This corresponds to 3 TeV design
- Could build 10 TeV with reduced luminosity performance
 - Can recover some but not all luminosity later

Still under discussion:

MuCol

- Timescale for 10 TeV HTS/hybrid collider ring magnets
- For second stage can use HTS or hybrid collider ring magnets

Strategy:

- HTS solenoids
- Nb₃Sn accelerator magnets
- **HTS** accelerator magnets

Seems technically good for any future project

Solenoid R&D

Started **HTS solenoid** development for high fields Synergies with fusion reactors, NRI, power generators for windmills, ... A Portone, P. Testoni,

32 T LTS/HTS solenoid demonstrated

J. Lorenzo Gomez, F4E

MuCol HTS

anductor

61 kA

Target solenoid, 20 T, 20 K

D. Schulte, Muon Collider, INFN, May 2024

Final Cooling solenoid $B_{max} = 2 \cdot \sqrt{\sigma_{max} \cdot \mu_0}$ 0.05 s 0.3 σ_{max} = 600 MPa B_{max}≈ 55 T A. Dudarev, B. Bordini, T. Mulder, S. Fabbri Surface Color: Current Density (A/mm^2) - Streamlines: Magnetic Fluc Density Direction

International UON Collider

35

30

25 _–

20 10

15

10

- 5

Collaboration

Staging

Important timeline drivers:

- Magnets:
- In O(15 years):
 - HTS technology available for solenoids
 - Nb₃Sn available for collider ring, maybe lower performance HTS
- In O(25 years):
 - HTS available for collider ring

Energy staging

- Start at lower energy (e.g. 3 TeV)
- Build additional accelerator and collider ring later
- 3 TeV design takes lower performance into account

Luminosity staging

- Start at with full energy, but less luminosity collider ring magnets
- Main luminosity loss sources are arcs and interaction region
 - Can later upgrade interaction region (as in HL-LHC)

- Expect to be able with enough resources **Detector technologies and design**
- Can do the important physics with near-term technology

JON Collider