

HTS Magnet status & plan for FCC-hh

Samuele Mariotto

samuele.mariotto@unimi.it

Outline

- HTS R&D State of the Art
- High Field Magnet Program
- INFN efforts on HTS magnet development
- HTS for FCC-ee
- Conclusions

2020 European Strategy Update

Which machines to build?

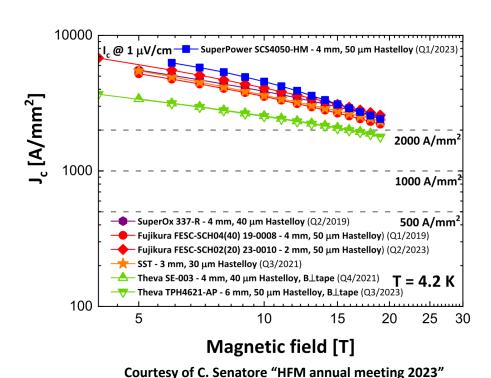
- Electron-positron Higgs Factory (highest priority)
- Proton-proton collider @ highest achievable energy

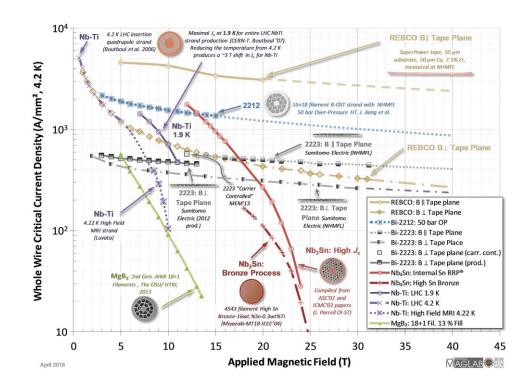
High Priority future initiatives:

"The particle physics community should **ramp up its R&D effort** focused on advanced accelerator technologies, in particular that for **high-field superconducting magnets**, including **high-temperature superconductors**"

Why HTS technology?

- High Magnetic Field (B < 25 T) operating at 1.9 K or 4.2 K
- Magnetic Field up to 16 T with higher T_{op} (10-20 K)

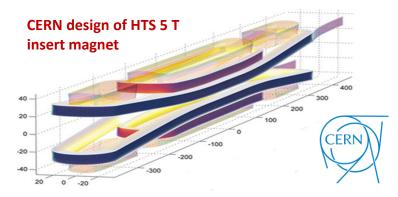


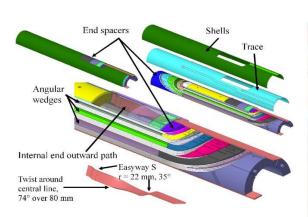


HTS ReBCO Conductor: State of the Art

ReBCO (ReBa₂Cu₃O_{7-x},) coated conductor is a potential enabling technology for magnets beyond 16 T

- J_c is sufficient for most application requirements: J_c (4.2 K, 20 T) > 2000 A/mm²
- Main conductor development driver: Fusion Applications




HTS Accelerator Magnet State of the Art

The broader HTS magnet technology, including cable design, coil design, joints, quench detection and magnet protection remains at an early stage of development

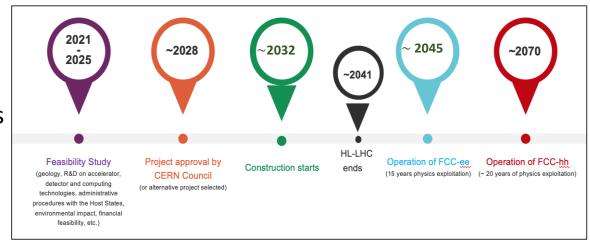
- Many small experimental solenoid magnets have been built
- Few coils for accelerator-type dipole magnets in ReBCO or Bi-2212 cables*
 - 5 T HTS inserts for hybrid dipole demonstrators at CERN and CEA
 - LBNL 3T CCT dipolar inserts
 - Significant performance limitations

CEA Cos-theta HTS 5 T insert magnet

High Field Magnet Program

Research and Development program @ CERN with National Laboratories

- Explore the performance limits of LTS magnets with a focus on robust large-scale implementation
- Explore the HTS magnet technologies for accelerator application beyond the limits of Nb₃Sn
- Develop the next generation of accelerator magnets for future colliders


https://cern.ch/hfm

Targets and goals:

- For the Nb₃Sn option:
 - 1. Establish the operational margins
 - 2. Select the magnet design
 - 3. Scale to 14-m-long magnets
- For HTS, prove the viability for accelerator dipoles

Magnet performances:

- 14 T Nb₃Sn magnet for FCC at \sqrt{s} > 80 TeV
- **20 T HTS magnet for FCC** at $\sqrt{s} \sim 120 \text{ TeV}$

Technology Readiness Level

Courtesy of B. Auchmann, E. Todesco MuCol and HFM Synergies IMCC Annual Meeting 2024

Magnet Technology Readiness Levels

20 T operational field HTS or hybrid dipole

magnet for FCC-hh

- Close Technology-Readiness-Level Gap with LTS
 - 1. Establish HTS technology-stack variants
 - 2. Demonstrate accelerator quality

HTS Conductors

- ReBCO for low AC loss and magnetization
- Novel practical HTS cables
- Alternative HTS such as IBS

> HTS Magnets

- Subscale HTS inserts (hybrid LTS/HTS)
- Stand-alone all HTS demonstrator

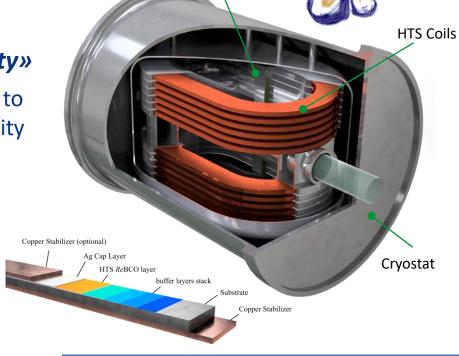
«Discussion for new collaboration for HTS research and development activity in parallel with Nb3Sn magnets»

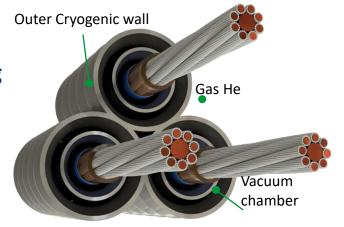
See S. Farinon talk

10 T HTS Dipole for IRIS project

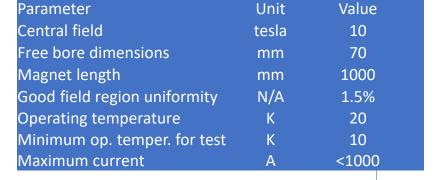
New development project (PNRR-IRIS) 2022-2025 «Innovative Research Infrastructure on applied Superconductivity»

 Improvement of 6 national research laboratories and university labs to perform cutting-edge technology research activity on superconductivity





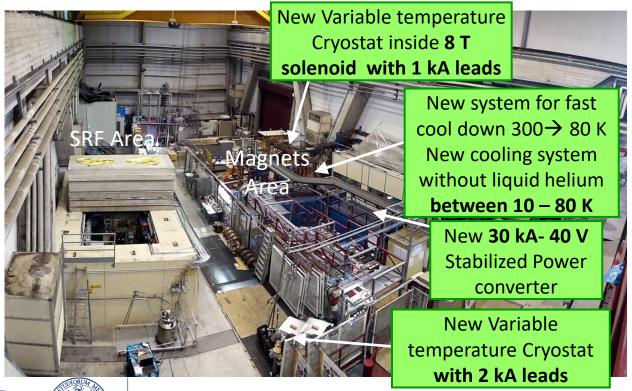
Thermal


Shield

DEMONSTRATORS:

- 1 GW Green Superconducting line in MgB₂ (25 kV, 40 kA)
- 2. 10 T HTS dipole «Energy Saving Magnet for Accelerators» @ 20 K

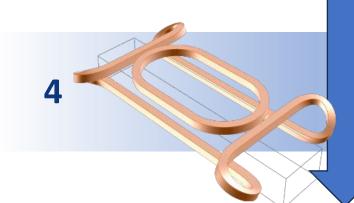
Courtesy of M. Statera, S. Sorti, S. Maffezzoli, L. Balconi


INFN-LASA Upgrade

New Test Station Infrastructure and equipment

Construction of **two new laboratories** 400 m² each

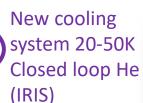
- 1. Superconducting Magnet Laboratory
- 2. Advanced Accelerator Test Facility



INFN-LASA HTS Program

Test of small HTS coils to handle tapes and test in LN₂

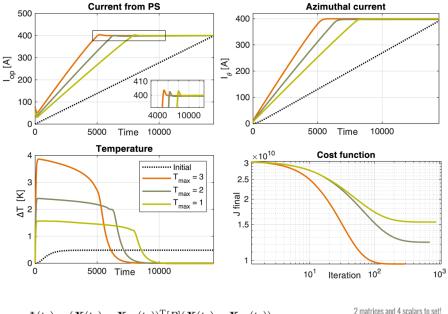
Experience with racetracks in magnet-like design at variable-T.



New technologies development (splicing, CI/MI windings)

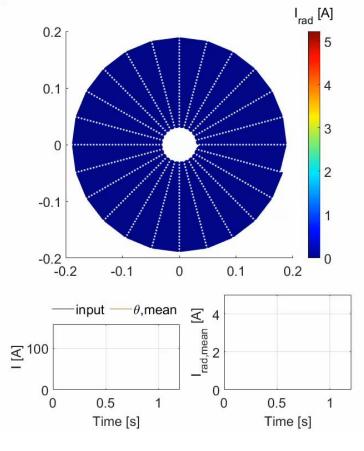
Non-planar coils: accelerator grade magnets

Small HTS tape dipole: Prof. S. Hahn (Seoul U.)



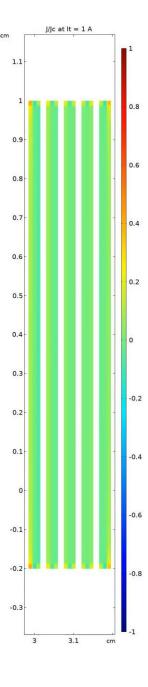
8 T field Solemi1 (IRIS)

Numerical Models for HTS Coils



$$\Phi(t_f) = (\boldsymbol{X}(t_f) - \boldsymbol{X}_{\mathrm{ref}}(t_f))^{\mathrm{T}}[P](\boldsymbol{X}(t_f) - \boldsymbol{X}_{\mathrm{ref}}(t_f)) \qquad \qquad \text{2 matrices and 4 scalars to set!}$$

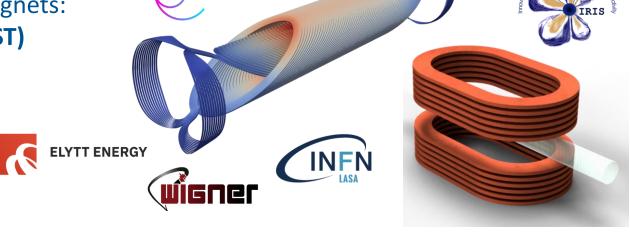
$$L(t) = (\boldsymbol{X} - \boldsymbol{X}_{\mathrm{ref}})^{\mathrm{T}}[Q](\boldsymbol{X} - \boldsymbol{X}_{\mathrm{ref}}) + U \exp\left(V\frac{\boldsymbol{X} - \boldsymbol{X}_{\mathrm{max}}}{\boldsymbol{X}_{\mathrm{max}}}\right) + W \exp\left(Z\frac{U - U_{\mathrm{max}}}{U_{\mathrm{max}}}\right)$$
 Penalty to reach a target or following a trajectory (i.e. target azimuthal current) Constraints on state (i.e. limiting temperature) Constraints on state (i.e. maximum current from power supply)


Lumped circuit employed in Optimal Control of ESMA.

Cost minimization

Need for accurate model and comprehensive description of HTS behaviour

Courtesy of S. Sorti, L. Balconi



INFN efforts on HTS program

Different on-going R&D Projects on HTS magnets:

- 4 T all-HTS, 80 mm bore CCT dipole (IFAST)
 - Collaboration with Industry
 - Demonstrate to work @ T=20 K
 - TRL 5
- 10 T dipole IRIS
 - Collaboration with Industry
 - Planar coils handling
 - Interconnections
 - TRL 4

IFAST

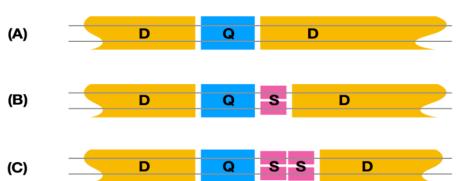
Synergies on HTS conductor R&D with MuonCollider

- MuCol Split Coil RFMTF (RF Magnet Test Facility)
 - See M. Statera talk next

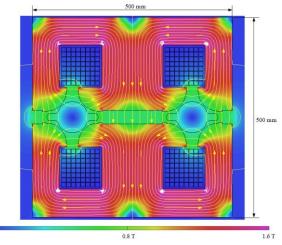
NEW R&D development programs: EuMAHTS

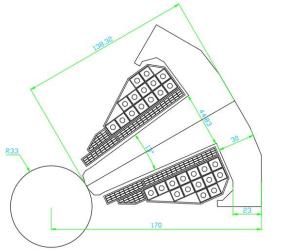
- INFRATECH proposal
- PI: L. Bottura, CERN

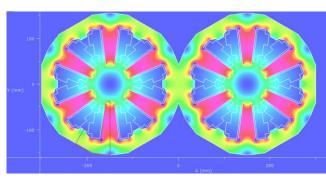
What about FCC-ee???


Main goal: develop superferric configurations able to work @ 50 K without thermal-shield with HTS superconductors

"ENERGY SAVING APPLICATION"


CDR: 2900 quads & 4700 sextupoles

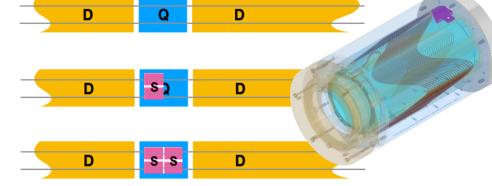

- Normal conducting, \sim 50 MW @ $t\bar{t}$
- 3 different types of short straight sections


CDR arc lattice

FCC-ee HTS magnets

"CHART" collaboration started to evaluate different solutions based on Nested SC quadrupole and sextupole with CCT design

Swiss Accelerator Research and


(B)

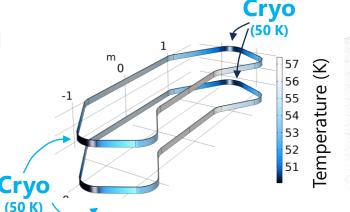
(C)

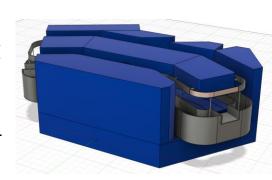
- HTS could work @ 40 K and providing good field quality
- Dipole filling factor improved with optic flexibility
- Cryo-cooler supplied cryostat
- 1 m long demonstrator before 2026

CONS:

- High quantity of HTS conductor (high cost of the magnet)
- Redundancy of cryocoolers: distributed cryogenic is mandatory

HTS option




Possible INFN expertise contribution

Energy Saving Accelerator and Beamline Magnets

Development of **Superferric** magnet configurations using **HTS** conductors optimized to work at **T < 50 K without thermal shield** and with **high energy efficiency**

Conclusions

R&D on HTS is a key aspect for advanced accelerator technologies

- Enable of very **high field magnet** (20 T, 4.2 K) for FCC-hh
- Key technology beyond Nb3Sn to **reduce accelerators power consumption** ($T\sim10-20~K$)
 - Possible application of next years HTS technology for FCC-ee design
- Strong effort on **R&D** needed for technology readiness increment
 - Conductor characterization in operating magnet to be explored
 - Validation of HTS compatibility with FCC-hh requirements: high priority
- INFN strongly involed in High Field Magnet program
 - Considerable effort of R&D on HTS conductor and HTS magnets in parallel to Nb3Sn high field magnets development
 - New infrastructure @ INFN-LASA for HTS magnets testing (IRIS)
 - HTS R&D is common to different scientific projects (HFM, FCC, MuCol)

INPUTS from many collaborators: INFN: L. Rossi, M. Sorbi, M. Statera, S. Farinon CERN: E. Todesco, B. Auchmann et al.

Thank you for the Attention!

