

Detector concepts/requirements for a Muon Collider

Massimo Casarsa

INFN-Trieste, Italy

on behalf of the Muon Collider International Collaboration

L'INFN e la Strategia Europea per la Fisica delle Particelle Rome, Italy, May 6-7 2024

INFN Detector requirements for a muon collider

- The requirements for the detector specifications from physics are similar to those of other multi-TeV machines to reconstruct:
 - ▶ boosted low-p_T physics objects from Standard Model processes;
 - central energetic physics objects from decays of possible new massive states;
 - less conventional experimental signatures: disappearing tracks, displaced leptons, displaced photons or jets, ...
- Constraints from the machine design: final focusing quadrupoles at ±6 m from the interaction point.
- Machine background conditions.

Ultimately, the detector design, the technological choices, and the development of the event reconstruction algorithms will be driven by the high levels of machine-induced background.

INFN Unique background conditions

	Description	Relevance as background
Muon decay	Decay of stored muons around the collider ring	Dominating source
Synchrotron radiation by stored muons	Synchrotron radiation emission by the beams in magnets near the IP (including IR quads \rightarrow large transverse beam tails)	Small
Muon beam losses on the aperture	 Halo losses on the machine aperture, can have multiple sources, e.g.: Beam instabilities Machine imperfections (e.g. magnet misalignment) Elastic (Bhabha) μμ scattering Beam-gas scattering (Coulomb scattering or Bremsstrahlung emission) Beamstrahlung (deflection of muon in field of opposite bunch) 	Can be significant (although some of the listed source terms are expected to yield a small contribution like elastic μμ scattering, beam-gas, Beamstrahlung)
Coherent e⁻e⁺ pair production	Pair creation by real [*] or virtual photons of the field of the counter-rotating bunch	Expected to be small (but should nevertheless be quantified)
Incoherent e ⁻ e ⁺ pair production	Pair creation through the collision of two real* or virtual photons emitted by muons of counter-rotating bunches	Significant

from yesterday's presentation by D. Calzolari

The detector studies presented here take into account only the dominant background from muon decays

→ beam-induced background (BIB).

INFN MDI: the detector's first line of defense

- The machine-detector interface (MDI) includes two conical tungsten shields ("nozzles") coated with borated polyethylene:
 - in combination with an appropriate configuration of the interaction region magnets, the nozzles significantly reduce the background particle flux into the detector.

M. Casarsa

BIB particles entering the detector volume INFŃ

- The BIB samples are generated with FLUKA, which transports the background particles up to the detector envelope
 - → details in D. Calzolari's presentation.
- On average, $\sim 10^8$ BIB particles enter the detector volume at every bunch crossing: mostly photons, neutrons, electrons/positrons, and charged hadrons.

√s= 10 vs 3 TeV

Photons - 10 TeV

Electrons/Positrons

Electrons/Positrons

10

E [GeV]

 10^{2}

Photons - 3 Tel

Neutrone

Muons

Hadron

Neutrons

Muons

Hadron

 10^{-1}

energy spectra for -1 < T < 15 ns w.r.t bunch crossing

For the time being, using the same1.5-TeV nozzles for both 3 and 10 TeV samples.

 \rightarrow beam-induced background characteristics in the detector mainly determined by the nozzles.

Detector concept for $\sqrt{s} = 3$ **TeV**

The following full-simulation detector studies with BIB focus on \sqrt{s} = 3 TeV, but the findings and results also apply to the 10 TeV case because of the similarity in the BIB characteristics.

INFŃ

6

- In the tracking system, the BIB produces a huge amount of spurious hits (mostly from very low-p_T electrons looping inside the tracker volume)
 - → track finding is very challenging due due to the number of hit combinations.

Muon Collider Detector								
Detector Reference	↓ MCD	Hit Density [mm ⁻²] MCD ATLAS ITK ALICE ITS						
Pixel Layer 0 Pixel Layer 1	$\begin{array}{c} 3.68 \\ 0.51 \end{array}$	$\begin{array}{c} 0.643 \\ 0.022 \end{array}$	$\begin{array}{c} 0.85\\ 0.51\end{array}$					

C. Accettura et al., Eur. Phys. J. C 83 (2023) 864

Higher hit occupancies than at HL-LHC detectors are expected, but the crossing rate at the muon collider is \sim 30-70 kHz vs 40 MHz at LHC.

event with 78 pileup vertices at CMS

INFN BIB mitigation in the tracking system

- Key features of the tracking system to deal with the BIB:
 - optimized detector layout;
 - high granularity;
 - precise timing;
 - directional information;
 - characteristics of the detector response (pulse shape and pixel cluster size).

incoming direction of the particle

high-precision timing

Ongoing R&D (DRD3)

- Silicon LGAD sensors for 4D tracking up to very high fluence:
 - V. Sola et al., Nucl. Instrum. Meth. A 1040 (2022) 167232.

prototype with new LGAD design funded by INFN-CSN5 and AIDAinnova grants

Project funded also by an EU ERC Consolidator Grant.

INFN Track reconstruction performance

- In the presence of the BIB, the reconstruction algorithms for all the physics objects had to be revisited or fine-tuned.
- Detector performance assessed with single particle samples and benchmark physics channels.

- In calorimeters, expected an approximately uniform deposition of energy by BIB particles.
- ECAL:
 - estimated a flux of 300 particles per cm² through the ECAL surface at every bunch crossing:
 - \blacktriangleright ~96% photons and ~4% neutrons;
 - average photon energy: 1.7 MeV.
- HCAL:
 - \blacktriangleright expected a \sim 10 times lower hit occupancy due to the BIB than in the ECAL;
 - ~99% neutrons.

INFN BIB mitigation in the calorimeters

- Key calorimeter features to mitigate the BIB effects:
 - high granularity;
 - fine longitudinal segmentation;
 - \blacktriangleright resolution on the particle time of arrival of ~ 100 ps.

Ongoing R&D (DRD6)

- Semi-homogeneous electromagnetic calorimeter based on lead fluoride crystals (CRILIN):
 - S. Ceravolo et al., Nucl. Instrum. Meth. A 1047 (2023) 167817.

2-layer 3x3-crystal CRILIN prototype funded by INFN

Hadronic calorimeter based on Micro-Pattern Gaseous Detectors:

C. Aruta et al., Nucl. Instrum. Meth. A 1047 (2023) 167731.

Funding from the Italian Ministry for Universities and Research ("PRIN") to build an integrated ECAL-HCAL prototype.

e.m. object reconstruction performance

single photon sample

 $\mu\mu \to H \nu \overline{\nu} \to \gamma \gamma \nu \overline{\nu}$

INFN

Jet reconstruction performance

To reduce contamination from BIB hits, the energy thresholds for ECAL and HCAL hits have been set to 2 MeV.

Despite crude background mitigation measures, simple calibration procedures, and non-optimized reconstruction algorithms, the performance of the 3 TeV detector in reconstructing the main physics objects is already satisfactory.

INFŃ

- In the muon system, significant BIB effects only in the endcap regions close to the beamline:
 - required good spatial resolution and possibly sub-ns time resolution.
- Under investigation the possibility of detecting the forward-scattered muons associated with the ZZ-fusion production process:
 - exploit the specific ZZ-fusion signature;
 - possibly help with the luminosity measurement.

Ongoing R&D (DRD1)

- Muon detector based on PicoSec Micromegas:
 - C. Aimè et al.,
 2024 JINST 19 C03052.

INFN Towards the update of the European Strategy

- Basic plan for the next update of the European Strategy for Particle Physics is to assess the detector performance on a set of representative physics channels with a detailed detector simulation that includes the machine background.
- Focus on benchmark processes with low- and high-p_τ physics objects:
 - At $\sqrt{s} = 3$ TeV (results to be submitted to JHEP):
 - production cross sections of Higgs boson into $b\overline{b}$, WW*, ZZ*, $\gamma\gamma$, $\mu\mu$
 - → Higgs properties at 3 and 10 TeV very similar, conclusions on the detector requirements apply also for 10 TeV;
 - ♦ double Higgs production and Higgs trilinear self-coupling in the channel HH → bbbb.
 - At $\sqrt{s} = 10$ TeV:
 - Higgs boson self-couplings in as many decay channels as possible;
 - Z' boson production.

 $\mu\mu \to H \nu \overline{\nu} \to b \overline{b} \nu \overline{\nu}$ at \sqrt{s} = 3 and 10 TeV

NFN Expected performance on Higgs couplings

- Higgs boson couplings to fermions and bosons are extracted from a global fit to the Higgs boson production cross sections:
 - ▶ the set of channels of full-simulation studies at 3 TeV is not yet complete for a global fit;
 - the muon collider potential at 3 TeV (1 ab⁻¹) and 10 TeV (10 ab⁻¹) is evaluated with a parametric detector simulation (partially tuned on the detailed detector simulation at 3 TeV) by M. Forslund and P. Meade and JHEP 08 (2022) 185.

INFN Higgs boson self-couplings

• A precise measurement of the Higgs boson self-couplings λ_3 and λ_4 would allow to constraint the shape of the Higgs potential:

$$V(h) = \frac{1}{2}m_{H}^{2}h^{2} + \lambda_{3}vh^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

• At 3 TeV sensitivity study with full simulation on λ_3 using the channel $\mu\mu \rightarrow HH\nu\overline{\nu} \rightarrow b\overline{b}b\overline{b}\nu\overline{\nu}$:

 $\frac{\Delta \lambda_3}{\lambda_3} \sim 20 - 30\%$ (1 ab⁻¹ with 1 experiment)

CLIC at 3 TeV with 2 ab⁻¹ and e⁻ beam polarization (bbbb + bbWW*→bbqq'qq'): 22% H. Abramowicz et al., Eur. Phys. J. C 77, 475 (2017)

▶ in line with a parametric study by T. Han et al., Phys. Rev. D 103 (2021) 013002:

 $\frac{\Delta \lambda_3}{\lambda_3} = 25\%$ (1 ab⁻¹ with 1 experiment).

But the full potential of the muon collider emerges at higher energies:

at 10 TeV the same parametric study by T. Han et al. estimates:

$$\frac{\Delta \lambda_3}{\lambda_3} = 5.6\%$$
 (10 ab⁻¹ with 1 experiment).

Quartic self-coupling

- Phenomenological study by M. Chiesa et al., JHEP 09 (2020) 098:
 - ► at 10 TeV assuming 20 ab⁻¹: $\Delta \lambda_4 / \lambda_4 \sim 50\%$.

NFN Example of Z' searches

- New Z' bosons can be probed directly up to $M_{Z'} \sim \sqrt{s}$, but indirect searches extend much beyond:
 - example of a phenomenological study exploring the reach of a muon collide for additional neutral gauge bosons that couple to the standard model: K. Korshynska et al., arXiv:2402.18460.

Z' exclusion limits at 95% C.L.

HL-LHC

Example of dark matter searches

• Higgs boson couplings represent a guaranteed result, but the muon collider physics program is much broader.

Search for a dark photon (DP) or an ALP produced in association with a photon at $\sqrt{s} = 3$ TeV (1 ab⁻¹) and $\sqrt{s} = 10$ TeV (10 ab⁻¹) in events with a single monochromatic photon.

Search for wino and higgsino dark matter at $\sqrt{s} = 3$ TeV (1 ab⁻¹) and $\sqrt{s} = 10$ TeV (10 ab⁻¹) with the disappearing track signature.

95% CL limits on DP effective coupling to muons

INFN Detector concepts for 10 TeV collisions

- Two detector concepts are currently under development with different layouts.
 - key features being optimized: tracker radius, magnetic field intensity, calorimeter depth.

- The effects of beam-induced background in the detector have been thoroughly studied with a detailed detector simulation and mitigation measures are in place to keep them under control.
- Full-simulation studies at 3 TeV are concluded and results will be soon published.
- The full-simulation studies point the way for the detector R&D (some R&D's already well advanced).
- The goals for the European Strategy update are a detector concept for 10 TeV collisions and the muon collider reach for representative physics cases.

INFN bb mass resolution vs hit energy threshold

 Hadronic jets are reconstructed using also low-energy objects: the energy threshold of 2 MeV for the calorimeter hits affects the energy resolution.

INFN Full sim vs parametric sim at 3 TeV

	Full	sim	Fasts	Fast sim			
	H->WW	2.9%	H->WW	1.7%			
	H->ZZ	17%	H->ZZ	11%			
Cross	H->bb	0.75%	H->bb	0.76%			
sections —	→ H->μμ	38%	Η->μμ	40%			
resolution	Η->γγ	8.9%	Η->γγ	6.1%			
	HH->4b	30%					
	g _{H\M/M}	0.9%	g _{HW/W}	0.55%			
Couplings	g _{H77}	8.2%	g _{H77}	5.1%			
	g _{Hbb}	0.8%	g _{Hbb}	0.97%			
resolution	g _{Huu}	19%	S _{Hum}	20%			
	g _{Hyy}	4.5%	g _{Hγγ}	3.2%			
	λ_3	20%	λ ₃ (95% CL)	25%			

M. Forslund and P. Meade and JHEP 08 (2022) 185

INFN Higgs boson couplings at future colliders

S. Dawson et al., Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics, arXiv:2209.07510

Higgs Coupling	HL-LHC	ILC250	ILC500	ILC1000	FCC-ee	CEPC240	CEPC360	CLIC380	CLIC3000	$\mu(10 \text{TeV})$	$\mu 125$	FCC-hh
(%)		+ HL-LHC	+HL-LHC	+ HL-LHC	+ HL-LHC	+ HL-LHC	+HL-LHC	+ HL-LHC	+HL-LHC	+ HL-LHC	+HL-LHC	+FCCee/FCCeh
hZZ	1.5	.22	.17	.16	.17	.074	.072	.34	.22	.33	1.3	.12
hWW	1.7	.98	.20	.13	.41	.73	.41	.62	1	.1	1.3	.14
$hb\overline{b}$	3.7	1.06	.50	.41	.64	.73	.44	.98	.36	.23	1.6	.43
$h\tau^+\tau^-$	3.4	1.03	.58	.48	.66	.77	.49	1.26	.74	.55	1.4	.44
hgg.	2.5	1.32	.82	.59	.89	.86	.61	1.36	.78	.44	1.7	.49
$hc\overline{c}$	-	1.95	1.22	.87	1.3	1.3	1.1	3.95	1.37	1.8	12	.95
$h\gamma\gamma$	1.8	1.36	1.22	1.07	1.3	1.68	1.5	1.37	1.13	.71	1.6	.29
$h\gamma Z$	9.8	10.2	10.2	10.2	10	4.28	4.17	10.26	5.67	5.5	9.8	.69
$h\mu^+\mu^-$	4.3	4.14	3.9	3.53	3.9	3.3	3.2	4.36	3.47	2.5	.6	.41
$ht\overline{t}$	3.4	3.12	2.82	1.4	3.1	3.1	3.1	3.14	2.01	3.2	3.4	1.0
Γ_{tot}	5.3	1.8	.63	.45	1.1	1.65	1.1	1.44	.41	.5	2.7	

INFN Higgs self-coupling λ_3 at future colliders

			55,,
collider	Indirect- h	hh	combined
HL-LHC [78]	100-200%	50%	50%
ILC_{250}/C^3-250 [51, 52]	49%		49%
ILC_{500}/C^3 -550 [51, 52]	38%	20%	20%
$CLIC_{380}$ [54]	50%	—	50%
$CLIC_{1500}$ [54]	49%	36%	29%
$CLIC_{3000}$ [54]	49%	9%	9%
FCC-ee [55]	33%	<u> </u>	33%
FCC-ee $(4 \text{ IPs}) [55]$	24%	-	24%
FCC-hh [79]	-	3.4-7.8%	3.4 - 7.8%
$\mu(3 \text{ TeV}) [64]$	-	15-30%	15 - 30%
$\mu(10 \text{ TeV})$ [64]	-	4%	4%

S Dawson et al. Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics, arXiv:2209.07510

26

INFN Radiation environment

1-MeV neutron equivalent fluence per year

total ionizing dose per year

C. Accettura et al., Eur. Phys. J. C 83 (2023) 864

Assumptions:

- ♦ collision energy: 1.5 TeV;
- collider circumference: 2.5 km;
- beam injection frequency: 5 Hz;
- days of operation per year: 200.

Radiation hardness requirements are similar to what expected at HL-LHC.