WG5: "QCD in Nuclei and associated Nuclear Modifications and Dynamics" Summary Discussion

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV Workshop INFN, Laboratori Nazionali di Frascati Dec. 13th, 2024

Lamiaa El Fassi and Misak Sargasian

- There is a gap between the traditional nuclear physics and QCD pictures, and the manifestation of such a gap in the valence quark region is the EMC effect
 - > In this respect, many fundamental questions can be addressed
 - Are the quarks and gluons confined to nucleon-like objects?
 - Does this depend on, e.g., the momentum filter $x_{\rm B}$?
 - What are the quark and gluon mass radii for ⁴He and how?
 - does this contrast with the nucleon?
 - What are the pressure and shear forces in ⁴He?
 - > Does exploring these questions could be done by imaging light nuclei and comparing quarks and gluons for slices in $x_{\rm B}$, $k_{\rm T}^2$, and $b_{\rm T}^2$?
 - Special emphasize to lightest nuclei up to Lithium-7
 - Exploring polarization properties, such as tensor polarized deuteron targets
 - Could go beyond traditional DIS structure function studies by addressing:
 - Spin and Gluon EMC effects, Flavor Dependence Nuclear PDFs, and TMDs
 - Measuring the charge and matter radius of nucleons in nuclear medium lead to probing modifications of quark and gluonic degrees of freedom

- The most important issue is self consistent description of nuclei as a baseline theory for studies of medium modification effects
 - > This includes the development of theoretical framework that addresses relativistic nature of bound system like nuclei
 - Macroscopic locality, Poincare Covariance, Satisfaction of baryonic and light-front sum rules
 - > Only after this, a realistic extend of medium modifications can be assessed
 - Emphasize is on lightest nuclei
 - > Quantities that can be calculated and used for medium modification studies
 - Unpolarized DIS structure functions; g_1 and g_2 distributions for ³He to extract the neutron g_1
 - Extending the approach for nuclear TMDs and GPDs

See M. Rinaldi's Talk

- ✓ Are there 3N Short Range Correlations and how to discover them?
 - > New layer of scaling in inclusive cross section ratios
 - Why it wasn't observed before and can it be observed now?
 - Measure it @ sufficiently large Q^2 and address challenges related to that
 - Checking the possible quadratic relation between 2N and 3N SRCs
 - First possible measurements already at 12 GeV
 - Limitation of current detector systems for JLab 22 GeV (JLab22)

See N. Fomin's Talk

- ✓ Are there 3N Short Range Correlations and how to discover them?
 - > New layer of scaling in inclusive cross section ratios
 - Why it wasn't observed before and can it be observed now?
 - Measure it @ sufficiently large Q^2 and address challenges related to that
 - Checking the possible quadratic relation between 2N and 3N SRCs
 - First possible measurements already at 12 GeV
 - Limitation of current detector systems for JLab 22 GeV (JLab22)

See N. Fomin's Talk

- Tensor Deuteron Capability at Jefferson Lab from 12 to 22 GeV
 - > This opens up completely new venues in probing strong force dynamics
 - Already limited measurements from HERMES, which showed surprising results
 - Measuring new quantity Anode that isolates the S state in the deuteron and allows to probe the nuclear core in ${}^3\rm{S}_1$ channel
 - Transfer Momentum Distribution studies with SIDIS
 - Exploring SOLID + new recoil detector capabilities

See N. Santiesteban's Talk

- Probe the nuclear core dynamics with measurements of super-fast quarks in nuclei @ JLab22;
 - > Dominated by DIS, suppression of resonance, and QE contributions
 - > The only option to reach necessary kinematics with sufficient precision
 - > Higher Q² coverage leads to cleaner data and more interpretations
 - $\,\,$ Constrain theoretical models by extending ξ to the region exhibiting rapid variations
 - > Examine A and Q² dependence

See J. Arrington's talk

- Probe the nuclear core dynamics with measurements of super-fast quarks in nuclei @ JLab22;
 - > Dominated by DIS, suppression of resonance, and QE contributions
 - > The only option to reach necessary kinematics with sufficient precision
 - > Higher Q² coverage leads to cleaner data and more interpretations
 - $\,{}^{\scriptscriptstyle >}\,$ Constrain theoretical models by extending ξ to the region exhibiting rapid variations
 - Examine A and Q² dependence

See J. Arrington's talk

- ✓ Which role the JLab22 upgrade would play in resolving the Color Transparency controversy between meson and baryon sectors?

 - Access other kinematics with sensitive FSIs in proton recoil polarization transfer
 - > Explore other meson channels such as J/ψ in electro- and photo-production as confirmation of CT in the mesonic sector
 - Explore high-precision nuclear transparency measurements
 - Possibility to investigate CT for baryonic "neutral" channel!

- Y How would the JLab22 upgrade help improve our understanding of 1) SIDIS production in nuclei, 2) dynamics leading to color confinement, 3) in-medium stimulated effects on fragmentation functions, and 4) time-distance scales of color-neutralization and hadron formation stages?
 - Broader kinematical coverage
 - Multi-fold extraction of experimental observables
 - Access rare meson (*D*-meson) and baryon (Ξ) channels, as well as explore diquark correlations in nucleon structure
 - Constrain theoretical models with various predictions of hadronization time-distance scales

See T. Mineeva's talk

- Y How would the JLab22 upgrade help improve our understanding of 1) SIDIS production in nuclei, 2) dynamics leading to color confinement, 3) in-medium stimulated effects on fragmentation functions, and 4) time-distance scales of color-neutralization and hadron formation stages?
 - Broader kinematical coverage
 - Multi-fold extraction of experimental observables
 - Access rare meson (*D*-*meson*) and baryon (Ξ) channels, as well as explore diquark correlations in nucleon structure
 - Constrain theoretical models with various predictions of hadronization time-distance scales

See T. Mineeva's talk

- Y How can the spectator tagging @ JLab22 access medium modifications and nuclear effects on quarks and gluons distributions?
 - > Broader ($x_{\rm B}$, Q^2) and finner ($x_{\rm B}$, -t) kinematical coverage
 - Extract experimental observables, BSA → CFF & GPDs, for a broader kinematical coverage compared to the forthcoming CLAS12 ALERT studies

- ✓ What is the impact of the JLab22 upgrade on accessing the anti-shadowing region and related medium modifications extended to the EMC region?
 - Study SIDIS with multi-hadron production and light-to-heavy nuclei
 - Access broader phase space and various fragmentation regions
 - Study of different meson (pions, kaons, etc.) and baryon (proton and Lambda, etc.) production will lead to flavor-tagging
 - > 3-D mapping of nPDF → nGPDs, nFFs & nTMDs
 - The JLab22 high precision and luminosity will allow exploring the anti-shadowing region in which the nuclear structure function effects are the least studied experimentally

See Z. Ye' and N. Kalantarians's talks