Summary: transverse momenta of hadrons

Conveners: Harut Avakian, Dave Gaskell, Nobuo Sato

Frascati, Dec 13, 2024

- Main goals: relevant kinematics and observables
- What is SIDIS2.0?

•Understanding hadronic correlations from $ep \rightarrow e'\pi X$ to $ep \rightarrow e'\pi X$ and $ep \rightarrow e'p\pi X$

•Understanding "diffractive" contributions and impact on phenomenology

Summary

Understanding the QCD: from observables to QCD dynamics

Moving from testing QCD to understanding it → Detailed studies of non-perturbative QCD dynamics in 3D space through measurements of multiplicities, and spin-azimuthal modulations

JLAB uniqueness:

- Superior luminosity of CEBAF
- High resolutions of detectors
- Ability for multidimensional and multiparticle detection in the kinematics where non-perturbative effects are significant

Note: eptoproduction, in simplest case of a single hadron detected in the final state, is a measurement of observables in 5D space (x,Q^2,z,P_T,ϕ), 6D for transverse target, $+\phi_S$

- Collinear SIDIS (last 50 years), is just the proper integration of observables, over $P_{T}\!,\!\varphi,\!\varphi_S$
- Dominant fraction of hard scattering data available at Q²<20 GeV²

All the above makes JLab unique in disentangling the genuine intrinsic transverse structure of hadrons encoded in 3D partonic distributions with <u>controlled systematics</u> in the kinematics dominated by valence quarks

Polarized Leptoproduction

Jefferson Lab

H. Avakian, LNF, Dec 13

Structure functions and depolarization factors

- Measurements of correlations of spin and transverse momenta, encoded in the Structure Functions (SFs), provides direct access to details of QCD dynamics
- Where are contributions from diffractive processes?
- Combination of statistics and depolarization factors defines measurable SFs
- At higher energies (EIC), observables surviving the $\epsilon \rightarrow 1$ limit (FUU, FUL, Transversely pol. FUT)

SIDIS as THE theory describes it

Probability to produce 1 or 2 hadrons in single photon exchange:

- Factorization allows description using distribution functions (TMD-PDF) and fragmentation functions (TMD FF)
- X→ multiplicity of unobserved hadrons LARGE, and x-section doesn't depend on X

Conclusions in case of apparent disagreement:

"much bigger/smaller" defined in comparison with experiment

- 1. Factorization is broken?
- 2. <u>Unaccounted terms may contribute</u>

Data has it all!!! Dealing with unaccounted terms:

- Theory accounts for them (ex. VMs)
- Experiment measures and excludes them!!! (ex.VMs)

P_T distributions provide access to k_T -distributions

Understanding of P_T-distributions of hadrons in SIDIS, most critical for TMD measurements in the multidimensional space, providing access to QCD dynamics!!!

Expected:

- 1) Perturbative contributions in the p_T -range covered by polarized SIDIS likely minor
- Significantly wider in k_T distributions of u-quarks with spin opposite to proton spin (possible sign flips in asymmetries related to polarization of partons)
- Significantly wider in k_T distributions of d-quarks (possible sign flips in asymmetries related to polarization of partons)
- 4) Significantly wider in k_T sea quark distributions (study contributions dominated by sea, K-,..)

Longitudinal photons and diffractive rhos

- CLAS12 measurements indicate the 2hadron exclusive sample is dominated by "diffractive ρ^{0} " produced at very small *t*
- JLab provides possibility of detailed studies of those rhos, <u>crucial for interpretation in</u> <u>terms of TMDs of SIDIS data in general</u>, and for EIC in particular.
- Estimated ~20% contributions from ρ to charged pion SIDIS, consistent with ~10% of diffractive DIS in inclusive DIS
- Indication: most longitudinally polarized ρ^0 (note: higher the Q² lower is ϵ)

Studies of exclusive processes require high resolution and multidimensional measurements !!!

Contributions of "diffractive ρ^0 s" in SIDIS

Major differences with charged rho+

The "diffractive" p will bias extractions of TMDs, unless properly subtracted in multidimensional space of SIDIS measurements.

Excluding the "diffractive" rho from SIDIS

Depending on how we exclude the exclusive rho we can have several versions of experimental samples of inclusive hadrons, each with their own bias:

1) Standard SIDIS (eN \rightarrow ehX, h= π ,K,..) within the full accessible kinematics, corrected for acceptance and RC, measured in the multidimensional space

 $\rightarrow e\pi X$ biased with respect to theory by presence of contributions from diffractive rho, contributing to ~20% of counts, in low P_T, with contributions to SSA ~10 times higher

2) Standard SIDIS ($eN \rightarrow e\pi X$) within the full accessible kinematics, corrected for acceptance and RC, measured in the multidimensional space, with subtracted in multi-D bins for rho0 contributions ("rho-subtracted SIDIS")

→requires measurements of pions from diffractive rho in multidimensional space, means detailed studies of SDMEs of rhos, requiring good precisions and huge statistics, also for all polarization observables, extensive validation needed, little known RC

 SIDIS subsamples (eN→epπX, eN→eππX) within the full accessible kinematics, allowing clear eliminiation of rho0 contributions using cuts on missing masses of epX or eππX ("rho-free SIDIS")

 \rightarrow biased by the presence of additional hadron in TFR (epX) or CFR (eppX), may need a new phenomenology

requires measurements of dependence on M_X to understand the bias,

Theory should be able to evaluate the bias from the presence of an additional hadron

Attempts to separate the "diffractive" contributions

Exclusive ρ contributions to π : P_T-dependence

COMPASS \rightarrow "Positive trend" also reproduced when additional proton in TFR detected (red)

- The same sign and size of π + and π SSA indicates the rho0 may not be properly subtracted(require detailed MC studies, which require proper SDMEs)
- While VM contributions are ~20% in multiplicities in SSA they can be >100%

Need proper MC for rho for all polarization states \rightarrow

"The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge." — Daniel J. Boorstin

First attempts to account or rho (M. Cerutti)

ρ -subtraction exercise

see Harut's talk

"Effective" subtraction of ρ -meson (diffractive) contribution

Back-to-back (dSIDIS) Formalism

- Detection of the target fragment proton allows "rho free" SIDIS measurements
- Signal from rho clearly increases at small t, consistent with large negative SSA (r₀₀⁸ SDME, arising from longitudinal rhos produced from transverse photons)

SUMMARY

- The superior luminosity of CEBAF, high resolutions of detectors, and ability for multidimensional and multiparticle detection, makes the JLab <u>unique</u> <u>facility</u> to study the non-perturbative QCD dynamics in 3D space in the kinematics dominated by valence quarks
- Interpretation of observables in charged pions SIDIS, and spin and azimuthal asymmetries, require detailed understanding of longitudinal photon contributions, vector mesons, and exclusive rho0 in particular.
- Exclusive "diffractive rhos" due to sensitivity to gluon contributions, have very different from any other (quark dominated) processes spin and azimuthal asymmetries, and may provide understanding of "diffractive" phenomena
- Measurements of exclusive rhos at 22 GeV will be critical for interpretation of high energy data, also providing a bridge between JLab and EIC
- Development of "rho subtracted" SIDIS, will require detailed measurements of SDMEs in multidimensional space, validated by "rho free" measurements in multi-D space.
- Need a major upgrade for SIDIS phenomenology to extract TMDs with controlled systematics (SIDIS2.0 or reforming SIDIS) to use in most efficient way major improvements of P_T and Q² coverage with 22 GeV upgade

• Support slides

Studies of Transverse Momentum Distributions (TMDs) <u>require</u> <u>studies of transverse momentum dependences of SIDIS observables</u> (multiplicities/asymmetries) in multidimensional space

- Understanding the systematics in SIDIS studies
- physics backgrounds:
 •What is "diffractive DIS" and "diffractive SIDIS"?
- what we' need to apply THE theory with controlled systematics?

 separate different contributions to x-section (locate SF of interest)
 separate different contributions to a given SF from different mechanisms (ex. longitudinal photon contributions)
 separating the kinematics of current and target fragmentation
 understanding the role of hadron correlations in SIDIS (impact of VMs)
 use Q²-dependent measurements as a unique tool to validate the interpretation of results

Exclusive ρ^0 : extending the Q² with JLab22

- Beam SSA provides important info on production of longitudinal rho from transverse photons
- Range in Q² increases significantly with 22 GeV upgrade, allowing detailed studies at beyond 10 GeV² and providing a bridge to EIC

Longitudinally polarized quarks in B2B SIDIS

Possible theory formalisms:

- Formalism based on fracture functions (Anselmino, Barone, Kotzinian (back-to-back, b2b, hadron production, DSIDIS)
- Semi-exclusive processes, involving GPDs/GTMDs on proton side (TFR) and FFs on pion side (CFR) Yuan and Guo
- Differences in A_{LL} , due to different weights on PDFs can provide additional info on impact of possible ingredients
- Measurements of A_{LL} for ρ^0 indicate very small values, and can be one of the reasons for higher A_{LL} with protons with a M_X cuts above 1.5 GeV (excluding exclusive ρ^0)
- Higher A_{LL} will change the phenomenology used last 40 years in DIS and SIDIS studies!!!

$ep \rightarrow e'p\pi X$

Detection of proton allows elimination of exclusive rho!

- Guarantying the "exclusivity" requires good resolutions (get worse at higher energies)
- Subtraction procedure relays on normalization, based on exclusive limit of LUND-MC
- All distributions have have tails, indicating the RC may not be negligible
- Extraction of SDMEs, will require validation in the multi-D space (significant samples)

A_{LL} studies of exclusive $\ensuremath{\rho^0}$: HERMES

Accounting of ρ^0 will change the phenomenology of helicity distributions

Jefferson Lab

H. Avakian, LNF, Dec 13

Studies of ρ^0 impact with longitudinally polarized NH₃ target

- Require the angle of negative pions is within a degree from calculated from e',p,π+ assuming exclusive e',p,π+π- event.
- Measurements of A_{LL} for ρ^0 indicate very small values (with ~10-20% bckg, likely negative ~ -2-10%), and can be one of the reasons for higher A_{LL} with protons with a M_X cuts above 1.35 GeV (excluding exclusive ρ^0) N

Need clear separation of hydrogen from NH₃ and diffractive exclusive ρ 0s from exclusive π + π -

Beam SSAs as a tool to separate regions and contributions

Separating Target Fragmentation Region TFR from Current fragmentation region (CFR)

Beam SSAs as a tool to separate regions and contributions

Separating Target Fragmentation Region TFR from Current fragmentation region (CFR)

SIDIS beam SSA can serve as a tool to separate:

- 1) kinematical regions (CFR/TFR)
- 2) dynamical contributions
- 3) cut on M_X eliminate exclusive VMs

Understanding exclusive rhos and SDME validations

Fig. 12: Comparison of the 23 SDMEs for exclusive ρ^0 leptoproduction on the proton extracted in the entire kinematic regions of the HERMES and COMPASS experiments. For HERMES the average kinematic values are $\langle Q^2 \rangle = 1.96$ (GeV/c)², $\langle W \rangle = 4.8$ GeV/c², $\langle |t'| \rangle = 0.13$, while those for COMPASS are $\langle Q^2 \rangle = 2.40$ (GeV/c)², $\langle W \rangle = 9.9$ GeV/c², $\langle p_T^2 \rangle = 0.18$ (GeV/c)². Inner error bars represent statistical uncertainties and outer ones statistical and systematic uncertainties added in quadrature. Unpolarised (polarised) SDMEs are displayed in unshaded (shaded) areas.

SIDIS at JLab: the theorists' comments

Statement:

"... SIDIS data has shown that there are basic open questions concerning the semi-inclusive pion/kaon production mechanisms at few-GeV energies, regarding e.g vector mesons and longitudinal photons....

Meaning:

JLab has problems specific for low energies, which should be solved, before THE theory of TMDs could be applied

Possible conclusion:

All problems are due to "few-GeV", will magically vanish at higher energies, and TMDs can be studied in the valence region [in multidimensional space] at higher Q² using THE theory [no need to deal with higher twists/correlations of quarks/hadrons/.....]

Exclusive ρ^0 : extending the Q²with JLab22

Range in Q² increases significantly allowing detailed studies at beyond 10 GeV²

Possible sources of large P_T behaviour

- 1) Perturbative contributions and p_T -dependence of unpolarized FFs (so far unlikely...)
- 2) Significantly wider in k_T distributions of u-quarks with spin opposite to proton spin (possible sign flips in asymmetries related to polarization of partons)
- 3) Significantly wider in k_T distributions of d-quarks (possible sign flips in asymmetries related to polarization of partons)
- Significantly wider in k_T sea quark distributions (study contributions dominated by sea, K-,..)
- 5) Increasing fraction of hadrons due to $F_{UU,L}$ (needed for proper interpretation
- \rightarrow separation of $F_{UU,L}$ from total)
- 6) Significant contributions from VMs to low P_T pion multiplicities, with direct pions showing up at large P_T (needed for proper interpretation → much wider in k_T original parton distributions)
- 7) Radiative corrections (need the full x-section, typically applied to pions, while may be needed for underlying VMs,...)
- 8) Two photon exchange (will need positron beam)

Multiplicities of hadrons in SIDIS

Perturbative contributions underestimate the multiplicities by an order of magnitude for all accessible kinematics at COMPASS

Studies of ρ^0 impact with longitudinally polarized NH₃ target

- Require the angle of negative pions is within a degree from calculated from e',p,π+ assuming exclusive e',p,π+π- event.
- Measurements of A_{LL} for ρ^0 indicate very small values (with ~10-20% bckg, likely negative ~ -2-10%), and can be one of the reasons for higher A_{LL} with protons with a M_X cuts above 1.35 GeV (excluding exclusive ρ^0) N

Need clear separation of hydrogen from NH₃ and diffractive exclusive ρ 0s from exclusive π + π -

q_T-crisis or misinterpretation

at higher Q^2 the slope in P_T changes, why? Higher the Q^2 lower the ε

→ less diffractive rho at higher Q^2 filling the low P_T in pion SIDIS.

New procedure: Fit from P_{Tmin} up P_{T} min can be lower at higher Q², as the contributions from diffractive rho decreases with Q²

Challenging for theory to explain the correlation of P_T and Q need experimental subtraction of rhos (proton detection will help)

- Models and lattice predict very significant spin and flavor dependence for TMDs
- Large transverse momenta are crucial to access the large k_T of quarks
- Several CLAS12 proposals dedicated to $g_1(x,k_T)$ -studies CLAS12
- Understanding of k_T -dependence of g_1 will help in modeling of f_1

Jefferson Lab

3D PDF Extraction and VAlidation (EVA) framework

Direct extraction of a given parameter sets from all steps (marked red) using Al tools techniques for the extraction of 3D PDFs and fragmentation functions from the multidimensional experimental observables with controlled systematics requires close collaboration of experiment, theory and computing

x-section

Figure 1.9: Total cross sections for pp (p \bar{p}), γp and $\gamma \gamma$ scattering as a function of the center of mass energy E_{CM} . The curves represent the DL parameterization with $\alpha_{IP}(0) = 1.0808$ (solid), = 1.112 (dashed) and = 1.088 (dotted).

Total hadron-hadron scattering can conveniently be described by the sum of a Reggeon and a Pomeron contribution. Donnachie and Landshoff [36] fitted all available hadronic data to the parameterization

$$\sigma_{tot} = A \, s^{\alpha_{IR}(0)-1} + B \, s^{\alpha_{IP}(0)-1} \,. \tag{1.38}$$

The parameters A and B depend on the particular process while global values for $\alpha_{IR}(0) \approx 0.55$ and $\alpha_{IP}(0) \approx 1.08$ are able to fit all considered data. A recent fit including newer data yielded $\alpha_{IP}(0) \approx 1.096$ [37].

Figure 11.6: The ratio of the diffractive cross section σ^{diff} , integrated over the bin width $M_a < M_X < M_b$, and the total $\gamma^* p$ cross section σ^{tot} is shown as a function of W for different bins of M_X and Q^2 . The dotted lines indicate the average values of $\sigma^{diff}/\sigma^{tot}$ in the measured W region for each bin in Q^2 and M_X .

H. Avakian, LNF, Dec 13

VM contributions

Jefferson Lab

SSA significant, and changing sign in 2 points separating 3 distinct regions, which have completely different impact on π + SSAs

The ratio of radiative cross (σ_{RC}) section to Born (σ_{B}) in SIDIS

- The radiative effects in SIDIS may be very significant and measurements in multidimensional space at different facilities will be crucial for understanding the systematics in evolution studies.
- Most sensitive to RC will be all kind of azimuthal modulations sensitive to cosines

From JLa12 to JLab24 Larger Q^2 at large P_T

