AI for BSM Physics Searches

Patrick Moran, The College of William & Mary JLab 22 GeV, LNF-INFN, 9-13 Dec. 2024

- 1. Dark Matter Detection
- 2. Anomaly Detection using Generative Models
- 3. Precision Measurements using Deep Learning

Mini-BDX

- Pilot version of BDX Experiment
- 25m downstream of Hall A beam dump
- Collected 6 months of data in 2019-20
- Detector consists of two layers of 22 PbWO₄ calorimeters each

M. Battaglieri et al., Phys. Rev. D 106 (2022) 7, 072011

Boosted Decision Trees

- Boosted Decision Trees (BDTs) are machine learning models that combine multiple decision trees sequentially, where each tree is trained to correct the errors of the previous ones, creating a strong ensemble model
- Highly effective for classification and regression tasks
- XGBoost is an open-source library that uses gradient boosting
- Want to use BDT to discriminate dark matter signal from background (cosmics and neutrinos coming from beam)

Input Features

- 1. Total energy
- 2. Shower direction
- Energy outside the seed (i.e. outside the highest energy crystal)
- 4. x-y position of the seed
- 5. Multiplicity (number of crystals above the threshold)

Experimental reach improved by BDT cut

6

Flux + Mutability

- A conditional generative approach to One-Class Classification (OCC) and Anomaly Detection (AD)
- Can we use deep learning to separate two classes more efficiently than rectangular cuts?
- While remaining agnostic towards the unknown class?

t-SNE representation of N-dimensional objects

Flux + Mutability: Architecture

- A. Inference Object fed through cAE
 - a. Features \otimes Kinematics
 - b. Features \otimes Residuals (x' x)
- B. Continuous Conditional Generation
 - a. Pre-fit KDE Objects in kinematic bins
 - b. Map inference kinematics to KDE object
 - c. Sample new Gaussian vectors from restricted domain
 - d. Gaussian Vectors
 [®] Inference Kinematics
 - e. Conditionally generate reference population via cMAF
- C. Compare inference object to **reference population** via Hierarchical clustering and quantile cuts

HDBScan and Quantile Cuts

- Augment the inference particle into the reference cluster space
 - Two notions of membership: density-based & distance-based
- Combine the two PMFs and extract a probability of membership (P_{in})
- Define Outlier Score as complementary probability P_{out} = 1 P_{in}
- Extract reference population outlier score corresponding to a desired quantile

Case 1: y/n Separation at GlueX (OCC)

- High confidence on one class
- Isolate highly active area of BCAL
- Reconstructed energy and z-position as kinematic conditions
- Simulated showers of photons (inference) and neutrons (reference)
- Strict preselection cuts
- Deploy fiducial cuts to extract only neutron showers which highly resemble photons
- 14 input features comprising of detector response variables

OCC: γ/n Separation at GlueX

11

Case 2: BSM Dijet Separation at LHC (AD)

- Consider QCD dijet events as **reference**
- Isolate $Z' \rightarrow tt$ dijets as **unknown**
- Publicly available datasets generated via MADGRAPH and Pythia8 using the DELPHES framework for fast detector simulation
- Require leading jet transverse momenta 450 GeV < pT < 800 GeV and sub-leading jet pT > 200 GeV
- Consider leading jet pT as single kinematic condition
- 15 input features
 - Remaining 4 vector properties of the leading jet and n-subjettiness variables
 - Sub-leading jet 4 vector and n-subjettiness variables

Anomaly Detection: BSM Dijet Separation at LHC

	F+M	Fraser et al.	Cheng et al.
AUC	0.891 ± 0.005	0.87	0.89

Kinematical Reconstruction with DNN

- Arratia et al (2022) previously showed improved kinematical reconstruction of DIS variables using DNN over standard reconstruction techniques
- Exploited full kinematical information and accounting for the presence of QED radiation
- Did not consider event-level uncertainty quantification

$$s = (k+P)^2, \qquad Q^2 = -q^2,$$
$$y = \frac{q \cdot P}{k \cdot P}, \quad \text{and} \quad x = Q^2/(sy)$$

Event-Level Uncertainty Quantification (ELUQuant)

Total loss function is the sum of components

 $\mathcal{L}_{Tot.} = \mathcal{L}_{Reg.} + \alpha \mathcal{L}_{Phys.} + \beta \mathcal{L}_{MNF.}$

Learn the posterior over the weights

 $\begin{aligned} \mathcal{L}_{MNF} &= -KL(q(\mathbf{W}) \| p(\mathbf{W})) \\ &= \mathbb{E}_{q(\mathbf{W}, \mathbf{z}_T)}[-KL(q(\mathbf{W} | \mathbf{z}_{T_f}) \| p(\mathbf{W})) + \log r(\mathbf{z}_{T_f} | \mathbf{W}) - \log q(\mathbf{z}_{T_f})] \end{aligned}$

Access epistemic (systematic) uncertainty through sampling MNF layers

Learn the regression transformation $\mathcal{L}_{Reg.} = \frac{1}{N} \sum_{i} \sum_{j} \frac{1}{2} (e^{-\mathbf{s_j}} \| \mathbf{v}_j - \hat{\mathbf{v}}_j \|^2 + \mathbf{s}_j), \ \mathbf{s}_j = \log \sigma_j^2$ epistemic Access aleatoric (statistical) as a function of regressed output

Constrain the physics

$$\mathcal{L}_{Phys.} = \frac{1}{N} \sum_{i} \log \hat{Q}_i^2 - (\log s_i + \log \hat{x}_i + \log \hat{y}_i)$$

C. Fanelli, and J. Giroux. Machine Learning: Science and Technology 5.1 (2024): 015017.

ELUQuant Performance Similar to DNN

- Reconstruction of NC DIS kinematics from H1 comparable to Arratia (2022)
- Comparing aleatoric/epistemic components from ELUQuant to RMS from DNN

Leveraging the Event-Level UQ

- The ability to remove events with large event-level uncertainty allows us to improve the ratio to truth
- Can be exploited for anomaly detection

Precision Measurement of $\sin^2\theta_{W}$

- Deviations from the SM prediction of the running of the weak mixing angle would be evidence of BSM
- Currently in progress: measuring $\sin^2 \theta_{\rm W}$ at EIC kinematics

Boughezal et al. (2022) Phys. Rev. D 106, 016006

Summary

- Boosted Decision Trees demonstrates improved signal discrimination for BDX-MINI
- Flux + Mutability uses generative models in an unsupervised way to identity anomalies with respect to a reference class
- Event-level uncertainty quantification and kinematical reconstruction using BNN can allow for anomaly detection
- Thank you!

Input Features for GlueX OCC

- LayerM_E = $\sum_{i}^{N} E_i$ $M \in \{1, 2, 3, 4\}$ is the layer number and E_i is the energy of the *i*th reconstructed point in the layer.
- Layer Mby Sum Layers $\mathbf{E} = \frac{1}{E_{iotal}} \sum_{i}^{N} E_i$ $M \in \{1, 2, 3, 4\}$ is the layer number and E_i is the energy of the i^{th} reconstructed point in the layer.
- Z Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta z_{i})^{2}}$, $\Delta z_{i} = (z_{i} + T_{z}) S_{z}$ E_{i} and z_{i} are the energy and z position of the *i*th point in the shower.
- **R** Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta r_{i})^{2}}$, $\Delta r_{i} = (R r_{i})$ E_{i} and r_{i} are energy and radial position of the *i*th point.
- T Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta t_{i})^{2}}$, $\Delta t_{i} = t_{i} S_{t}$ E_{i} and t_{i} are the energy and timing information of the i^{th} point.
- θ Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta\theta_{i})^{2}}$, $\Delta\theta_{i} = \theta_{i} S_{\theta}$ E_{i} and θ_{i} are the energy and polar angle (from the target center) of the *i*th point.
- ϕ Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta\phi_{i})^{2}}$, $\Delta\phi_{i} = \phi_{i} S_{\phi}$ E_{i} and ϕ_{i} are the energy and azimuthal angle of the *i*th point.
- z Entry = $(S_z T_z)\frac{R}{S_r} + T_z$ The position at which the particle hits the inner radius of the BCAL.

Summary of Basic DIS Kinematic Reconstruction Methods

Method name	Observables	y	Q^2	$x \cdot E_p$
Electron (e)	$[E_0, E, \theta]$	$1 - \frac{\Sigma_e}{2E_0}$	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
Double angle (DA) $[6, 7]$	$[E_0, \theta, \gamma]$	$\frac{\tan\frac{\gamma}{2}}{\tan\frac{\gamma}{2}+\tan\frac{\theta}{2}}$	$4E_0^2\cot^2\frac{\theta}{2}(1-y)$	$\frac{Q^2}{4E_0y}$
Hadron (h, JB) [4]	$[E_0, \Sigma, \gamma]$	$\frac{\Sigma}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
ISigma (I Σ) [9]	$[E, \theta, \Sigma]$	$\frac{\Sigma}{\Sigma + \Sigma_e}$	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
IDA [7]	$[E, \theta, \gamma]$	y_{DA}	$\frac{E^2 \sin^2 \theta}{1-y}$	$rac{E(1+\cos heta)}{2y}$
$E_0 E \Sigma$	$[E_0, E, \Sigma]$	y_h	$4E_0E - 4E_0^2(1-y)$	$\frac{Q^2}{2\Sigma}$
$E_0 \theta \Sigma$	$[E_0, \theta, \Sigma]$	y_h	$4E_0^2 \cot^2 \frac{\theta}{2}(1-y)$	$\frac{Q^2}{2\Sigma}$
$\theta \Sigma \gamma$ [8]	$_{[\theta,\Sigma,\gamma]}$	y_{DA}	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
Double energy $(A4)$ [7]	$[E_0, E, E_h]$	$\frac{E-E_0}{(xE_p)-E_0}$	$4E_0y(xE_p)$	$E + E_h - E_0$
$E\Sigma T$	$[E, \Sigma, T]$	$\frac{\Sigma}{\Sigma + E \pm \sqrt{E^2 + T^2}}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
$E_0 ET$	$[E_0, E, T]$	$\tfrac{2E_0-E\mp\sqrt{E^2-T^2}}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{4E_0y}$
Sigma (Σ) [9]	$[E_0, E, \Sigma, \theta]$	$y_{1\Sigma}$	$Q_{1\Sigma}^2$	$\frac{Q^2}{4E_0y}$
e Sigma $(e\Sigma)$ [9]	$[E_0, E, \Sigma, \theta]$	$\frac{2E_0\Sigma}{(\Sigma+\Sigma_e)^2}$	$2E_0E(1+\cos\theta)$	$\frac{E(1+\cos\theta)(\Sigma+\Sigma_e)}{2\Sigma}$

Table 1. Summary of basic reconstruction methods that employ only three out of five quantities: E_0 (electron-beam energy), E and θ (scattered electron energy and polar angle), Σ and γ (lon-gitudinal energy-momentum balance, $\Sigma = \sum_{\text{HFS}} (E_i - p_{z,i})$, and the inclusive angle of the HFS). Alternatively, the A4 method makes use of the HFS total energy E_h . Shorthand notations are used

<u>Input features of ELUQuant</u>

• Define variables to characterize the strength of QED radiation

$$p_T^{\text{bal}} = 1 - \frac{p_{T,e}}{T} = 1 - \frac{\sum_e \tan \frac{\gamma}{2}}{\sum \tan \frac{\theta}{2}}$$
 and $p_z^{\text{bal}} = 1 - \frac{\sum_e + \Sigma}{2 E_0}$

7 features to help indicate QED radiation in the event

- The values of p_T^{bal} and p_z^{bal} .
- The energy, η , and $\Delta \phi$ of the reconstructed photon in the event that is closest to the electron-beam direction, where $\Delta \phi$ is with respect to the scattered electron.
- The sum ECAL energy within a cone of $\Delta R < 0.4$ around the scattered electron divided by the scattered-electron track momentum.
- The number of ECAL clusters within a cone of $\Delta R < 0.4$ around the scattered electron.

Tot. 15 input features

+ additional 8 features

- Scattered-electron quantities $p_{T,e}$, $p_{z,e}$ and E.
- HFS four-vector quantities T, $p_{z,h}$ and E_h .
- $\Delta \phi(e, h)$ between the scattered electron and the HFS momentum vector.
- The difference $\Sigma_e \Sigma$.

Dataset	Training Events	Validation Events	Testing Events	Size on Disk
H1	$8.7 imes 10^6$	$1.9 imes 10^6$	1.9×10^6	8 GB

Slide borrowed from C. Fanelli

Utilized input features and H1 MC dataset of paper NIM-A 1025 (2022):

