Light Dark Matter 0000 BDX 0000 BDX-MI 000 BDX@22 G 0000 Outlook 0

The BDX experiment

Marco Spreafico

On behalf of BDX collaboration

25 - 10 - 2024

Light Dark	Matter
0000	

Light Dark Matter

BDX

- Experimental setup
- Physics reach

BDX-MINI

- Experimental setup
- Results

BDX@22 GeV

- Background@22 GeV
- Physical reach @ 22 GeV

Outlook

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
●000	0000	000	0000	O
Dark Matter Probler	n			

Astrophysical observations suggest existence of DM

- $\rightarrow~$ Information only from gravitational interaction
- $\Rightarrow \ \ \, \text{No clue on DM nature}$

Common assumption: thermal origin of DM

- $\rightarrow~$ DM we see comes from an epoch of thermodynamical equilibrium with SM
- $\rightarrow~$ constrain on available mass range
- $\rightarrow~$ strong constraint on viable DM \rightarrow SM interaction

Light Dark Matter - Dark Photon model

Simplest possibility: "vector portal"

 $\rightarrow~U(1)$ gauge boson (dark photon) coupling to electric charge

$$\mathcal{L}_{LDM} \sim g_D A'_{\mu} J^{\mu}_{\chi} + \varepsilon e A'_{\mu} J^{\mu}_{EM} + [...]$$

Annihilation in SM:

Model parameters:

- Dark Photon mass $m_{A'}$, coupling to SM arepsilon
- Dark Matter mass m_{χ} , coupling to DM g_D $(\alpha_D \equiv g_D^2/4\pi)$

$$y \equiv \frac{g_D^2 \epsilon^2 e^2}{4\pi} \left(\frac{m_\chi}{m_{A'}}\right)^4 \sim \langle \sigma v \rangle_{relic} m_\chi^2$$

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
00●0	0000	000	0000	0
Light Dark Matter				

Direct detection not suited for sub-GeV DM searches:

- DD experiments optimized for $m_{\chi}>$ GeV
 - $\rightarrow E_R \propto m_{\chi}^2/m_N$
 - \Rightarrow very low recoil energy
- LDM-SM interaction cross section depends on impinging particle velocity
 - \rightarrow DD sensitivity strongly model-dependent
- Inelastic DM almost impossible to probe
 - Upscattering kinematically forbidden

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
000●	0000	000	0000	O
Light Dark Matter				

LDM at accelerators

Accelerator based experiments at the *intensity frontier* uniquely suited to search for LDM:

- $\rightarrow~$ High intensity \Rightarrow increased possibility of DM production
- $\rightarrow~$ Production of relativistic DM \Rightarrow testing different models

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)

 χ production

- e^- beam impinging on target
- χ from decay of A' produced in the dump

 χ interaction

- χ propagate through shielding
- χ scattering through A' exchange

Izaguirre et al., Phys. Rev. D 88, 114015

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
0000	o●oo	000	0000	0

BDX

BDX

JLab experiment approved by PAC46

- Run time: 2026-2029
- Fully optimized for LDM searches

JLAB offers the best condition for BDX:

- Medium high energy beam (11 GeV)
- High electron beam current (65 μ A)
- Fully parasitic wrt Hall-A physic program (Moeller)

New facility to be built in front of Hall-A beam dump:

- new underground (~ 8 m) hall
- 25 m downstream of Hall-A beam dump
- passive shielding ($\sim 3~{\rm m}$ lead) to reduce beam related background

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
0000	oo●o	000	0000	O
BDX - Detector				

Detector design

Electromagnetic calorimeter:

• homogeneous 4 tons ECal

Veto system:

- hermetic multi layer veto
- 2 layer of plastic scintillator counters
- 2 cm lead vault between veto and calorimeter

Modular detector arrangement:

- 1 module: $10 \times 10 \times 2$ alveoli
 - Good coverage of DM flux
 - Module surrounded by veto

Signal detection:

ullet EM shower (\gtrsim 100 MeV) and no corresponding activity in the active veto

 \rightarrow total: 4 modules

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
0000	ooo●	000	0000	O
BDX - Reach				

Thanks to CEBAF high luminosity and an optimized detector layout, BDX will be able to efficiently explore a large portion of LDM parameter space

 Light Dark Matter
 BDX
 BDX-MINI
 BDX.@22 GeV
 Outlook

 BDX-MINI - Experimental Setup
 000
 000
 000
 000
 000

Pilot version of BDX:

- \bullet 2.56 GeV e^- beam
- \bullet current up to $150~\mu {\rm A}$
- measurement alternating beam on and beam off data (beam on time \sim 50 %)
- $\bullet~{\rm accumulated}~2.54\times10^{21}~{\rm EOT}$
- cosmic background studied with beam off data

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
0000	0000	o●o	0000	O
RDX MINI Dete	octor			

Electromagnetic calorimeter (ECal):

- 44 PbWO₄ crystals ($4 \times 10^{-3} \text{ m}^3$ active volume)
- SiPM readout

M. Battaglieri et al., Eur.Phys.J.C 81 (2021) 2, 164

Electromagnetic calorimeter (ECal):

- 44 PbWO₄ crystals ($4 \times 10^{-3} \text{ m}^3$ active volume)
- SiPM readout

Veto system

- Active veto:
- Octagonal (IV) plastic scintillator
- Cylindrical (OV) plastic scintillator
- Passive tungsten shielding

BDX-MINI analysis fully optimized for DM searches

- Cosmic background studied using beam-off data
- Signal cut optimized using beam-off data and signal MC simulation

Experimental results
Yields (for $N_{EOT} = 2.54 \cdot 10^{21}$)
• $N_{on} = 3623$
• $N_{off} = 3822 \ (\tau = 1.054)$

No excess is observed

- $\rightarrow~$ evaluated 90% exclusion limit in the LDM parameter space
- $\rightarrow~$ results comparable with flagship experiments

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
0000	0000	000	●000	O
BDX @ 22 GeV -	Overview			

What changes with a 22 GeV beam?

Higher beam energy

Higher secondary particle energy:

- Higher masses can be probed
- Resonant enhancement shifted to higher masses ($\propto \sqrt{E_{beam}}$)

Higher secondary flux

- Higher e^{\pm} flux \rightarrow enhancement DM production probability
- $\bullet\,$ Higher secondary flux \rightarrow study of different Dark Sector possibilities

Enhanced secondary particle flux

Increased overall beam-related background:

- $\mu \rightarrow {\rm can}$ be rejected using veto
- $\bullet \ n \rightarrow$ non rejectable using veto but low energy contribution
- $\nu \rightarrow \text{not rejectable}$

BDX optimized for 10 GeV beam

ightarrow exploit Hall-A 22 GeV run to extend reach

Increased beam energy \rightarrow increased number of secondary e^{\pm}

Warning!

Estimates are made using the current beam dump configuration, but the layout will have to change to absorb a higher energy beam

Light Dark Matter BDX BDX-MINI BDX@22 GeV Outlook

BDX @ 22 GeV - Beam-related background

Increased beam energy \Rightarrow increased number of secondary particles:

Warning!

Different beam dump layout and a more optimized shielding may greatly affect the expected secondary fluxes

A. Fulci et al., Instruments 8 (2024) 1

Data with 22 GeV beam can extend BDX reach to higher masses:

 Light Dark Matter
 BDX
 BDX
 BDX.022 GeV
 Outlook

 BDX @ 22 GeV - Reach
 Reach

Data with 22 GeV beam can extend BDX reach to higher masses:

Light Dark Matter	BDX	BDX-MINI	BDX@22 GeV	Outlook
0000	0000	000	0000	●
Outlook				

- Dark matter in the MeV-to-GeV range is largely unexplored
- BDX: search for Dark Sector particles in the MeV-GeV mass range
 - Technique viable to probe different DM candidates
 - JLab provides unique opportunities to probe different models

• BDX-MINI: pilot version of BDX

- First modern beam dump experiment searching for Light Dark Matter
- Detector optimized for LDM searches
- Analysis aimed to LDM detection
- $\bullet~\mbox{Evaluated}$ exclusion limit $\rightarrow~\mbox{competitive}$ to flagship experiments
- BDX@22 GeV: extend BDX results but more difficult run conditions
- Beam dump experiment at e beam dump highly sensitive to Light Dark Matter in the MeV-GeV range
 - \rightarrow BDX-MINI remarkable results demonstrate that BDX is a mature, ready-to-run experiment (after the construction of a new underground experimental hall)

Backup slides

Light Dark Matter - Inelastic Dark Matter

Dark Sector may be composed of two states with different mass

ightarrow Stable low mass state χ_1 and unstable high mass state χ_2

Same parameter $y \equiv \frac{g_D^2 \epsilon^2 e^2}{4\pi} \left(\frac{m_{\chi}}{m_{A'}}\right)^4 \sim \langle \sigma v \rangle_{relic} m_{\chi}^2$ can be used to probe this model

M. Battaglieri et al., arXiv:1910.03532

Light Dark Matter - Muonphilic Dark Scalar

Dark Sector could explain SM anomalies, for example muon $(g-2)_{\mu}$ anomaly

 $\rightarrow~$ Simplest possibility: Dark Scalar coupled only to muons

Model parameters:

- Dark Scalar mass m_S
- DS-muon coupling g_{μ}

C. Cesarotti et al., Phys.Rev.D 110 (2024) 5, 055032

Beam Dump experiments

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)

 $\chi_{1,2}$ production

- $\bullet \ e^-$ beam impinging on target
- $\chi_1\chi_2$ from decay of A' produced in the dump

 $\chi_{1,2}$ interaction

- χ_1 scattering through A' exchange
- χ_2 decay in χ_1 and e^-e^-

M. Battaglieri et al., arXiv:1910.03532

Beam Dump experiments

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)

 $\chi_{1,2}$ production

- $\bullet \ e^-$ beam impinging on target
- $\chi_1\chi_2$ from decay of A' produced in the dump

 $\chi_{1,2}$ interaction

- χ_1 scattering through A' exchange
- χ_2 decay in χ_1 and e^-e^-

M. Battaglieri et al., arXiv:1910.03532

Beam Dump experiments

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)^1

DS production

- \bullet Secondary μ cross different materials
- \bullet DS production from μ scattering

DS decay

- DS propagate over large distance
- $\bullet~{\rm DS}$ decay identified as two high energy $\gamma {\rm s}$

¹ Phys.Rev.D 110 (2024) 5, 055032

L. Marsicano et al., Phys.Rev.D 98 (2018) 11, 115022

BDX - Status and perspective

→ 2014 - BDX Letter of Intent → 2015 - BDX Proto: study of cosmic background → 2017 - BDX Hodo: study of beam-related background → 2018 - BDX approved at PAC46 with the highest scientific rating → 2021 - BDX-Mini: test of BDX technology BDX → 2025 - BDX Hall construction? ✓ 2025 - BDX construction → 2026 - Moeller: BDX running parasitically

 $\rightarrow~$ 20xx - BDX@22 GeV

BDX - Reach

Thanks to CEBAF high luminosity and an optimized detector layout, BDX will be able to explore different LDM models

arXiv:1607.01390, arXiv:1910.03532, Phys.Rev.D 98 (2018) 11, 115022

BDX - Reach

Thanks to CEBAF high luminosity and an optimized detector layout, BDX will be able to explore different LDM models

arXiv:1607.01390, arXiv:1910.03532, Phys.Rev.D 98 (2018) 11, 115022

BDX - Reach

Thanks to CEBAF high luminosity and an optimized detector layout, BDX will be able to explore different LDM models

arXiv:1607.01390, arXiv:1910.03532, Phys.Rev.D 98 (2018) 11, 115022