#### Overview of sub-GeV Physics in

#### the Dark sector

#### (theory side)



Luc Darmé IP2I – UCBL 12/12/2024



#### Outline

## Introduction : dark sectors and Feebly Interacting Particles

Classifying portal interactions to understand dark sectors

How to produce dark sector particles with a  $e^{\pm}$  beam

• In the thirties, the study of beta nuclei decays led to a puzzling situation

 $\rightarrow$  Energy conservation appeared broken ...

Only this part « known »!



• In the thirties, the study of beta nuclei decays led to a puzzling situation

 $\rightarrow$  Energy conservation appeared broken ...

Only this part « known »!



Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines [...] will explain to you in more detail, how because of the "wrong" statistics of the N and Li<sup>6</sup> nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, [...]

W. Pauli

Pauli's letter of the 4th of December 1930

• Neutrinos were the first « dark » particles

→ Their suppressed interaction arise from UV physics: the heavy EW gauge bosons

$$O_{Fermi} \propto \frac{g_W^2}{M_W^2} (\bar{\nu}_{e,L} \gamma_{\mu} e_L) (\bar{\mu}_L \gamma^{\mu} \nu_{\mu,L})$$



• Neutrinos were the first « dark » particles

→ Their suppressed interaction arise from UV physics: the heavy EW gauge bosons

$$O_{Fermi} \propto \frac{g_W^2}{M_W^2} (\bar{\nu}_{e,L} \gamma_{\mu} e_L) (\bar{\mu}_L \gamma^{\mu} \nu_{\mu,L})$$

 In modern language, the Fermi operator acts as a « portal » between the « dark » neutrinos sector and the lepton and quark one

$$O_{Fermi} \propto \frac{g_W^2}{M_W^2} (\bar{\mu}_L \gamma_\mu e_L) (\bar{\nu}_{e,L} \gamma^\mu \nu_{\mu,L})$$





#### From DM properties to mediator searches



#### From DM properties to mediator searches



 To be light but hidden, we need new particles to be completely neutral under the SM interactions (otherwise we would have seen them)

#### From DM properties to mediator searches



 Thus we also need a gauge singlet combination on the SMside  To be light but hidden, we need new particles to be completely neutral under the SM interactions (otherwise we would have seen them)

 $O_{portal} = \frac{1}{\Lambda^n} (SM) (Dark sectors)$ 

#### FIPs: Feebly Interacting Particles

• FIPs = the particle interacting the most with the SM = "new neutral particle which interacts with the SM via suppressed new interactions"



#### FIPs: Feebly Interacting Particles

• FIPs = the particle interacting the most with the SM = "new neutral particle which interacts with the SM via suppressed new interactions"



#### An example : FIP mediator and dark matter



#### An example : FIP mediator and dark matter



#### The main concept: portals



#### Summary: portal interactions

• FIPs are neutral particle, must be coupled to a neutral "current" in the SM

|                 | SM operator FII                | Ps / dark sector |             |
|-----------------|--------------------------------|------------------|-------------|
| Scalar portal   | $ H ^2  (d=2) , \longmapsto$   |                  | Dark Higgs  |
| Vector portal   | $F_{\mu\nu}$ $(d=2),$          | <b>→</b>         | Dark photon |
| Neutrino portal | $LH  (d = 5/2) \longleftarrow$ | →                | HNL         |
|                 |                                |                  |             |

#### Summary: portal interactions

• FIPs are neutral particle, must be coupled to a neutral "current" in the SM

|                 | SM c         | operator  | FIPs /                | dark sector   |             |                                  |
|-----------------|--------------|-----------|-----------------------|---------------|-------------|----------------------------------|
| Scalar portal   | $ H ^2$      | (d=2), -  |                       | $ S ^2$       | Dark Higgs  | Mixes with the<br>standard Higgs |
| Vector portal   | $F_{\mu\nu}$ | (d=2),    | $\longleftrightarrow$ | $F'^{\mu\nu}$ | Dark photon | Mixes with<br>photon             |
| Neutrino portal | LH           | (d = 5/2) | $\longleftrightarrow$ | N             | HNL         | Mixes with<br>neutrinos          |
|                 |              |           |                       |               |             |                                  |

#### Summary: portal interactions

• FIPs are neutral particle, must be coupled to a neutral "current" in the SM

|                 | SM o         | operator  | FIPs /                | / dark sector |             |                                  |
|-----------------|--------------|-----------|-----------------------|---------------|-------------|----------------------------------|
| Scalar portal   | $ H ^2$      | (d=2), -  |                       | $ S ^2$       | Dark Higgs  | Mixes with the<br>standard Higgs |
| Vector portal   | $F_{\mu\nu}$ | (d=2),    |                       | $F'^{\mu\nu}$ | Dark photon | Mixes with<br>photon             |
| Neutrino portal | LH           | (d = 5/2) | $\longleftrightarrow$ | N             | HNL         | Mixes with<br>neutrinos          |
|                 |              |           |                       |               |             |                                  |

- The three simplest cases will make the FIP "inherits" the interactions of a SM counterparts : the Higgs, the photon and the neutrinos
- Each portal operator is controlled by a small parameters, a mixing angle for the scalar and neutrinos portal, and the so-called kinetic mixing for the vector portal.

#### Portal interactions: it's all about the mediator



 $O_{scalar} = \lambda_{SH} |H|^2 |S|^2 \implies$ 

Induces a mass mixing between H and S

→ Light new scalars inherit the SM Higgs flavourful couplings

→ Tiny coupling to first generation fermions ...



#### Portal interactions: it's all about the mediator



 $m_{\gamma}$  [GeV]

#### Portal interactions – Vector portal



Induces kinetic mixing between the photon and the dark photon

- $O_{vector} \propto \varepsilon F_{\mu\nu} F'^{\mu\nu} \Longrightarrow$
- After recovering proper kinetic terms, the dark photon inherits a fraction of the EM current
- → Easily produced from electrons/positrons experiments
- $\rightarrow$  Relatively fast decay rates



#### Portal interactions – Vector portal



#### Portal interactions – Neutrino portal





Induces mass

- mixing between the neutrinos and the HNL
- Inherits the one (or several) of the neutrinos interactions
  - →Typically much longer lifetime, no Mondt's gap in this case !
  - →Dominant production via meson decays at sub-GeV masses

#### Portal interactions – Neutrino portal



Induces mass mixing between the neutrinos and the HNL

• Inherits the one (or several) of the neutrinos interactions

 $O_{\nu} \propto y_N L_i \cdot H N \implies$ 

- →Typically much longer lifetime, no Mondt's gap in this case !
- →Dominant production via meson decays at sub-GeV masses



#### Dimension 3 portals and UV theories

 Starting from dimension 3 portal the UV theory typically has a strong impact on the structure of the low energy interactions

 $Q_{L,i}\gamma^{\mu}Q_{L,j}, \bar{e}_i\gamma^{\mu}e_j, \dots$ 

flavour violation, flavour non-universality, scalar vs vector operators, etc...

New gauge group, for  
instance 
$$L_{\mu} - L_{\tau}, B - L...$$
  
The breaking of this  
gauge group introduces a  
new scale

 $V_{\mu} \left( \bar{e}_i \gamma^{\mu} e_i + \cdots \right)$ 

 $M_V \propto g v_{B-L}$ 

Experimentally small gauge coupling and GeV-scale particle  $\rightarrow$  large VEV

#### Dimension 3 portals and UV theories

 Starting from dimension 3 portal the UV theory typically has a strong impact on the structure of the low energy interactions

. . .

instance  $L_{\mu} - L_{\tau}$ ,  $B - L_{\cdots}$ The breaking of this gauge group introduces a new scale

 $M_V \propto g \ v_{B-L}$ Experimentally small gauge coupling and GeV-scale particle  $\rightarrow$  large VEV "Axion-like particle" model: pNGB from a UV scalar sector, with mass term protected by an approximate global symmetry

flavour violation, flavour non-universality, scalar vs vector operators, etc...

#### Dimension 3 portals and UV theories

 Starting from dimension 3 portal the UV theory typically has a strong impact on the structure of the low energy interactions

$$\overline{Q}_{L,i}\gamma^{\mu}Q_{L,j}, \overline{e}_i\gamma^{\mu}e_j, \dots$$

$$V_{\mu} \left( \bar{e}_i \gamma^{\mu} e_j + \cdots \right)$$

New gauge group, for instance  $L_{\mu} - L_{\tau}, B - L...$ The breaking of this gauge group introduces a new scale

 $M_V \propto g \ v_{B-L}$ Experimentally small gauge coupling and GeV-scale particle  $\rightarrow$  large VEV "Axion-like particle" model: pNGB from a UV scalar sector, with mass term protected by an approximate global symmetry

 $(\bar{e}_i\gamma^{\mu}e_i+\cdots)$ 

flavour violation, flavour non-universality, scalar vs vector operators, etc...

$$\frac{1}{\Lambda^2} \bar{\chi_i} \gamma^\mu \chi_j (\bar{e}_i \gamma^\mu e_j + \cdots)$$

Fermi-like theories: generic for all new UV theories with a light dark fermionic sector.

#### Probing FIPs can mean testing UV theories

- Consider as an example a new B-L gauge bosons, with mass  $M_V \propto g v_{B-L}$  arising from the VeV  $v_{B-L}$  of a new scalar
- Thus,  $M_V/g$  is directly linked toa UV new scale
  - → Testing these portals means testing physics at very large energy



# Producing dark sectors in $e^+/e^-$ -based accelerators

#### Dark sector production in $e^{\pm}$ machines

• Let's consider a new bosonic FIP (since those are the ones with the best prospects in  $e^+/e^-$  experiments



For a dark photon

#### Dark sector production in $e^{\pm}$ machines

• Let's consider a new bosonic FIP (since those are the ones with the best prospects in  $e^+/e^-$  experiments

→ Electron-only machines mostly rely on Bremsstrahlung process → Positron machines have more channels ( owing to possible annihilation on beam target's electrons)



Bremsstrahlung



For a dark photon

Z

 $e^{\pm}$ 

### Beam energy dependence

- For bremsstrahlung, the CS depends only feebly on the actual  $e^+/e^-$  energy
  - Intensity, signal efficiencies, and control of the background are the important parameters!



Significant reduction

only near beam energy

#### Beam energy dependence

- For bremsstrahlung, the CS depends only feebly on the actual  $e^+/e^-$  energy
  - Intensity, signal efficiencies, and control of the background are the important parameters!
  - For resonant production one needs to meet the resonance condition

$$E_+ = \frac{m_V^2}{2m_e}$$

 $\rightarrow$  For a 22 GeV beam, resonant production will test masses around 150 MeV.

• For associated production: the smaller the better since  $\sigma \propto \frac{log(s)}{s}$ , as long as  $E \gg E_{res}^{NP}$ 

#### Concerning resonant production...



• We will be interested into the simplest possible mechanism for new bosons :  $e^+e^- \rightarrow V$ , resonant production  $\sigma_{res} \sim \frac{g_{ve}^2}{2 m_e} \pi Z \, \delta(E_+ - E_{res})$ 

#### Concerning resonant production...



- We will be interested into the simplest possible mechanism for new bosons :  $e^+e^- \rightarrow V$ , resonant production  $\sigma_{res} \sim \frac{g_{ve}^2}{2 m_e} \pi Z \, \delta(E_+ - E_{res})$
- Significantly larger CS than  $e^+e^- \rightarrow \gamma V$ , and bremsstrahlung process
- What are the trade-offs for resonant production ?
  - → First, we need to find positrons somewhere. Typically, this implies a certain loss in energy + beam intensity
  - $\rightarrow$  Then we need to hit the resonant energy

$$s_{COM} = 2 m_e E_{res} = M_V^2$$

#### How to get to the exact energy ?

(1) Study models with large invisible width  $\Gamma_V^{inv} \rightarrow \text{Typically extremely}$ important for DM-motivated models !

#### How to get to the exact energy ?

(1) Study models with large invisible width  $\Gamma_V^{inv} \rightarrow$  Typically extremely important for DM-motivated models !

#### (2) Vary the beam energy

→ "Scanning" procedure is required, varying the beam energy on non-negligible see e.g. 1802.04756



#### How to get to the exact energy ?

(1) Study models with large invisible width  $\Gamma_V^{inv} \rightarrow$  Typically extremely important for DM-motivated models !

#### (2) Vary the beam energy

→ "Scanning" procedure is required, varying the beam energy on non-negligible see e.g. 1802.04756



Active target

FIPS ->

(3) Use energy loss and secondary  $e^+$  production in the target to "scan" naturally various positron energies

## →Requires a "not-too-thin" target to allow some $e^{-,e^+beams}$ evolution of the beam

 → Works to a certain extent also in electron-based machines
 See e.g. 1802.03794, 2105.04540, 2206.03101

#### How to get to the exact energy ? (2)

(4) Use the fact that electrons in a material are in bound states around nuclei !



- The true process involve a positron interacting with an entire electronic cloud:
  - → Electrons are bounded and in momentum space they have their momentum density distribution

Strong similarities with DIS off nuclear targets ...

### How to get to the exact energy ? (2)

(4) Use the fact that electrons in a material are in bound states around nuclei !



- The true process involve a positron interacting with an entire electronic cloud:
  - → Electrons are bounded and in momentum space they have their momentum density distribution

Strong similarities with DIS off nuclear targets ...

 Both a blessing and a curse, corresponding to the two main cases in which one needs to use this formalism

→If one want to have a precise prediction for the CoM in order to scan for resonances (see X17)

 $s \sim 2E_b \left( E_A - p_{A,z} \right)$ 

→If one wants to have as high a CoM energy as possible : use high-momentum core electrons, then atoms act as a « particle accelerators » !

#### Conclusion

#### Conclusion

- Sub-GeV dark sectors are a generic class of extension of the Standard Model
- They arise quite typically from new UV theories designed to solve various flaws of the SM, and are often the smoking gun of a larger symmetry at work in the UV
- Their interaction with the SM can be classified, leading to a small number of « portals » to test experimentally
- For an  $e^+$  or  $e^-$  various production channels are available, with larger rates possible in  $e^+$  based experiments.



#### Backup

## ALP production in $e^{\pm}$ machines

• Let's consider a new bosonic FIP (since those are the ones with the best prospects in  $e^+/e^-$  experiments

→ Electron-only machines mostly rely on Bremsstrahlung process

Bremsstrahlung

 $\sigma_{ae} \propto lpha_{
m em}^2 g_{ae}^2 rac{m_e^2}{m^2}$ 



For an ALP/axion X17

→ Positron machines have more channels ( owing to possible annihilation on beam target's electrons)



#### Energy matters for decay lengths!

• Bremsstrahlung extracts most of the energy of the beam (even for heavy FIP)

• Similarly FIP from resonant production inherits all the beam energy

$$E_{FIP}^{\text{res}} = \frac{m_{FIP}^2}{2 m_e} \simeq 22 \text{ GeV}$$

• Not the case of associate production  $e^+e^- \rightarrow \gamma FIP$ 

### The dark matter motivation



#### Sub-GeV dark matter

- The WIMP window is constrained by, e.g. :
  - $\rightarrow$ Unitarity of its interactions
  - $\rightarrow$ Lee-Weinberg bound
  - →CMB constraints: one should not inject ionising particles at late (CMB) time



• Copying the WIMP freeze-out idea at low mass implies extending the model with a new mediator with small coupling with the SM



Below the GeV, at  $m_{\chi} < m_{V},$  need  $\varepsilon < 10^{-3}$ 

Can be p-wave, etc...

#### Axion-like particle – dim 5

• An axion-like particle (ALP)  $a_i$ , interacts via two portal operators :  $\bar{l}\gamma^{\mu}\gamma^5 l$  and  $F^{\mu\nu}\tilde{F}^{\mu\nu}$ 

$$\mathcal{L} \subset \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{1}{2} m_a^2 a^2 + \frac{1}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \sum_{l=e,\mu,\tau} \frac{g_{al}}{2} (\partial_{\mu} a) \bar{l} \gamma^{\mu} \gamma^5 l$$

• We can "hide" the ALP via a coupling to a dark current

$$\mathcal{C} \supset \frac{g_{a\chi}}{2} (\partial_{\mu} a) \mathcal{J}^{\mu}_{5,D}$$

• Origin: approximate symmetry in Higgs UV sector

Typical ALP model arise as pNGB from a bigger scalar sector, with mass term protected by an approximate global symmetry

→Coupling can be represented either in Yukawa or "derivative form", in both cases, large couplings must arise from small scale VEVs.

#### Dimension 6 operators

• Following the example of neutrinos: fermions portal are straightforwardly obtained if new UV theories with a light dark sector.

 $\rightarrow$  E.g. new vector mediator replace the muons with a dark fermion



• Another example inelastic dark matter setups, where a GeV-scale state decay into a lighter one (e.g. dark matter) via a heavy mediator  $\chi_1 \swarrow$ 



### The thick target approach

- Use straggling and bremsstrahlung processes to degrads the beam energy
- Effective to probe a large range of masses without varying the beam energy too much
- But FIP production occurs directly in the shower
  - →Requires either a displaced signal or missing energy to escape background
  - →This works as soon as we have a coupling to neutrinos ...



## FIPs production in the lab



Flavoured mesons decay  $B \rightarrow K X, K \rightarrow \pi X, K \rightarrow inv \text{ or } D, B, J/\Psi \rightarrow \ell N \text{ etc } ...$ 

Light mesons decay  $\pi^{0}, \eta \rightarrow \gamma V ; \rho, \omega \rightarrow V \text{ or } \pi^{0} \rightarrow a ; \pi^{0}, \eta \rightarrow \chi \chi \text{ etc } ...$ 

*EM*-derived processes  $e^+e^- \rightarrow V\gamma, a\gamma$ ;  $e N \rightarrow e N V$ , etc ...  Flavoured FIPs, Higgs
 portal and neutrinos portal

Vector portal, ALP/fermion portal

Mesons decays estimations

 No automatic tool available (new light states: not possible to apply standard WET-based tools)

→ Analytical calculation required. BR usually estimated by standard techniques ( $\chi$ PT, Vector Meson Dominance, ...) For VMD, see e.g. Fujiwara et al. (1985)

- EM-derived processes
  - For collider experiments: standard MC tools can be used (MG5\_aMC@NLO, CalcHEP, etc...) Belyaev et al. 2012
  - For beam dump → must include the track-lengths information, nucleus form factors...

Limit on rare BR,  $B \rightarrow K, K \rightarrow \pi,$  $\pi \rightarrow inv.,$  etc...

Limits on monophoton search @ BaBar/NA64/ LEP

#### Anomalies: (non-exhaustive) list

