Hadron Mass Corrections in SIDIS at 22 GeV

Alberto Accardi Christopher Newport U. & Jefferson Lab

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV

Collaborators: M. Cerutti, J. Guerrero

This work is partly supported by the DOE Office of Science, DE-SC0008724

Outline

● Why correcting for hadron masses

- **○** Quick overview of available studies
- **○** Mostly collinear (pT-integrated)
- **○** Impact on multiplicities at JLab 6, HERMES, COMPASS

● Size of HMCs

- **○** Phase-space heat maps for cross sections
- **○** (A bit of) theoretical systematics

● Key messages:

- **○** For the whole community:
	- \rightarrow HMCs at 22 GeV are not negligible (pi) / large (K)
	- \rightarrow Serious pheno / theory studies must to start now!
- O For 22 GeV:
	- \rightarrow we need help, experimental expertise to factor in detector issues and impact studies

Why hadron mass corrections?

Why Hadron Mass Corrections?

\rightarrow Large enough, calculable

 \rightarrow Match partonic & external kinematics

Why Hadron Mass Corrections?

\rightarrow Large enough, calculable

 \rightarrow Match partonic & external kinematics

 \rightarrow Relieve fits of residual HTs

Quick overview of literature (let me know what I missed)

Inclusive DIS lots and lots of studies

- Nachtmann (1974) elegant math
- Georgi, Politzer + de Rujula OPE $^{-1}$
- Ellis, Furm., Petronzio 1986 col.pQCD
- ….
- Kuagin, Petti (xxxx)
- Accardi, Qiu (2008)
- Guerrero, Accardi, Phys.Rev.D 106 (2022)
- $**$ CJ fits (2010-); $**$ AKP fits (2005-)
- …many many more…
	- REV: Schienbein et al. (2007)
	- REV: Accardi, Brady et al. (2012)

pT integrated SIDIS

- **Albino, Kniehl, Kramer, Nucl. Phys. B (2008)
- *● Accardi, Hobbs, Melnitchouk, JHEP 0911 (2009)*
- *● Guerrero et al., JHEP 1509 (2015)*
- *● Guerrero, Accardi, PRD 97 (2018)*

TMD SIDIS (unpolarized)

- Boglione et al., JHEP 10 (2019)
- **Scimemi, Vladimirov, JHEP 06 (2020)
- Scimemi, Moos, Vladimirov, JHEP 01 (2022)

** global QCD fits

Guerrero, Accardi, PRD 97 (2018) Guerrero et al., JHEP 1509 (2015) Accardi, Hobbs, Melnitchouk, JHEP 0911 (2009)

● Invariant momentum fractions

Guerrero, Accardi, PRD 97 (2018) Guerrero et al., JHEP 1509 (2015) Accardi, Hobbs, Melnitchouk, JHEP 0911 (2009)

● Invariant momentum fractions

- **● Lightcone momentum fractions**
	- Suitable for QCD factorization

$$
x_B = \frac{-q^2}{2q\cdot p} \qquad \left\{ \begin{array}{l} z_h = \displaystyle \frac{p_h\cdot q}{p\cdot q} \\ \\ z_e = \displaystyle \frac{2p_h\cdot q}{-q2} \end{array} \right.
$$

$$
\xi = -\frac{q^+}{p^+} \qquad \qquad \zeta = \frac{p_h^-}{q^-}
$$

 \cdot q

Guerrero, Accardi, PRD 97 (2018) Guerrero et al., JHEP 1509 (2015) Accardi, Hobbs, Melnitchouk, JHEP 0911 (2009)

● Partons live on the light cone

$$
x=\frac{k^+}{p^+}\stackrel{LO}{=}\xi
$$

$$
z=\frac{p_h^-}{k'^-}\overset{LO}{\gtrsim}\zeta\left(1+\frac{m_h^2+k_T'2}{Q^2}\right)
$$

- **● Lightcone momentum fractions**
	- Suitable for QCD factorization

$$
\xi = -\frac{q^+}{p^+} \qquad \qquad \zeta = \frac{p_h^-}{q^-}
$$

 k^{\prime}

 \boldsymbol{k}

 $\equiv p_h$

 ϵ

 \boldsymbol{p}

Guerrero, Accardi, PRD 97 (2018) Guerrero et al., JHEP 1509 (2015) Accardi, Hobbs, Melnitchouk, JHEP 0911 (2009)

● Partons live on the light cone

$$
\begin{array}{ll} \displaystyle x=\frac{k^+}{p^+}=\xi & \displaystyle \frac{2x_B}{p^+} \\ \displaystyle z=\frac{p_h^-}{k'^-}\stackrel{LO}{\gtrsim}\zeta\left(1+\frac{m_h^2+k_T'2}{Q^2}\right) & \end{array} \hspace{2cm} \xi=-\frac{q^+}{p^+}=\frac{2x_B}{1+\sqrt{1+4x_B^2\frac{M^2}{Q^2}}}\xi
$$

 k^{\prime}

 \boldsymbol{k}

 $\equiv p_h$

 ϵ

 \pmb{p}

Guerrero, Accardi, PRD 97 (2018) Guerrero et al., JHEP 1509 (2015) Accardi, Hobbs, Melnitchouk, JHEP 0911 (2009)

$$
\begin{aligned} x &= \frac{k^+}{p^+} = \xi \\ z &= \frac{p_h^-}{k'^-} \, \gtrsim \, \zeta \left(1 + \frac{m_h^2 + k'_T 2}{Q^2} \right) \end{aligned} \qquad \begin{aligned} \zeta &= \frac{p_h^-}{q^-} = \frac{z_h}{2} \frac{\xi}{x_B} \left(1 + \sqrt{1 - 4 \frac{x_B^2}{z_h^2} \frac{M^2}{Q^2} \frac{m_h^2}{Q^4}} \right) \\ z_e &= \frac{p_h^-}{q^-} \, \gtrsim \, \zeta \left(1 + \frac{m_h^2 + k'_T 2}{Q^2} \right) \end{aligned}
$$

 k^{\prime}

 \boldsymbol{k}

 $\equiv p_h$

 ϵ

 \pmb{p}

Impact – Hadron Multiplicities

Guerrero, Accardi, PRD 97 (2018) Guerrero et al., JHEP 1509 (2015) Accardi, Hobbs, Melnitchouk, JHEP 0911 (2009)

Kinematic shift $x_B \rightarrow \xi$ $z_{h(e)} \rightarrow \zeta_h$

$$
\circ \quad \text{Calc with HMCs:} \qquad M^h = J(\xi, \zeta_h) \frac{\sum_q e_q^2 q(\xi) D_h(\zeta_h)}{\sum_q e_q^2 q(\xi)}
$$

$$
\circ \quad \text{Without:} \qquad \qquad M^{h(0)} = \frac{\sum_q e_q^2 q(x_B, z_h)}{\sum_q e_q^2 q(x_B)}
$$

● Mass correction ratio

- To "remove" HMCs from data
- Visually compare different experiments

$$
M^{h(0)}_{exp}=\frac{M^{h(0)}}{M^h}M^h_{exp}
$$

Kaons (integrated over z, Q²)

Experimental data HMCs removed

Pions (integrated over z, Q²)

HMC size: heat maps

HMC heat maps

● HMC relative effect for cross sections

$$
\frac{HMC-LT}{HMC}=\frac{\sigma_h-\sigma_h^{(0)}}{\sigma_h}
$$

○ That is, what mistake would we make if we analyzed the data with massless calculation?

accardi@jlab.org JLab at 22 GeV

HMC heat maps

● HMC relative effect for cross sections

$$
\frac{HMC-LT}{HMC}=\frac{\sigma_h-\sigma_h^{(0)}}{\sigma_h}
$$

○ That is, what mistake would we make if we analyzed the data with massless calculation?

● Heat maps

- **○** HMCs depend on 3 variables: x_B , z_h , Q^2
	- \rightarrow (z_e would really be better, but not enough time for this workshop...)
- \circ 2 variables at a time, fix the 3rd
- Will show 22 GeV kinematics
	- \rightarrow Pions, then kaons

Heat maps: pions

accardion and the control of the co

(apologies for the semi-random color maps, we'll do better asap)

- **● Non-negligible effect**
	- \circ Especially towards large x, near the $W^2 > 4$ GeV² cut

 $HMC-LT \quad \quad \sigma_h-\sigma_h^{(0)}$ HMC σ_h

Increases with z and $1/Q^2$ \bullet

Pions: $x \text{ vs. } z_h$

$X - zh$ correlation \bullet

Look well here, it will become more obvious with the kaons \bigcirc

Heat maps: kaons

accardion and the control of the co

(apologies for the semi-random color maps, we'll do better asap)

Kaons: *x* **vs.** *Q* **2**

$$
\frac{HMC-LT}{HMC}=\frac{\sigma_h-\sigma_h^{(0)}}{\sigma_h}
$$

 \sim

● Larger effects! Positive and (mostly) negative

Kaons: *z***_h vs. Q²**

$$
\frac{HMC-LT}{HMC}=\frac{\sigma_h-\sigma_h^{(0)}}{\sigma_h}
$$

● Larger effects! Positive and (mostly!) negative

$$
\frac{HMC-LT}{HMC}=\frac{\sigma_h-\sigma_h^{(0)}}{\sigma_h}
$$

Theoretical uncertainty -1 st pass -

Transverse momentum effects

- Fragmentation scaling variable and kinematic shifts depend on
	- Final state hadron's transverse momentum
		- \rightarrow would need TMD formalism
	- And mass of undetected hadrons
		- \rightarrow this we cannot control
	- \circ But it is a 1/Q² effect
- **Estimate the effect:**
	- \circ In previous plots, $m_{hT}^2 \approx m_h^2$
	- Now compare with $m_{hT}^2 \approx m_h^2 + \langle k_T^2 \rangle_{\text{TMD fits}}$

$$
\quad \rightarrow \quad \text{Plot heat maps of } \quad \frac{HMC_T-HMC}{HMC_T} = O\Big(\frac{1}{Q^2}\Big)
$$

$$
z=\frac{p_h^-}{k'^-}\overset{LO}{\gtrsim}\zeta\,\Big(1+\frac{m_h^2+k_T'2}{Q^2}\Big)
$$

With / without transverse momentum

 $\frac{HMC_T-HMC}{HMC_T}=O\Big(\frac{1}{Q^2}\Big)$

With / without transverse momentum

 $\frac{HMC_T-HMC}{HMC_T}$

Takeaways

Takeaways

- **● Key messages:**
	- **○** For the whole community:
		- \rightarrow HMCs at 22 GeV are not negligible (pi) / large (K)
		- \rightarrow Serious pheno / theory studies must to start now!
	- O For 22 GeV:
		- \rightarrow we need help, experimental expertise to factor in detector issues and impact studies
- **● Theoretical uncertainties in HMCs**
	- \circ Can be controlled / fitted away
- **● We all need to also look at HMC in TMD observables!**

Thank you!

Appendix:

More theory uncertainty plots & Phase space limitations

With/out transverse mom: x vs. z

 $\frac{HMC_T-HMC}{HMC_T}=O\Big(\frac{1}{Q^2}\Big)$

With/out transverse mom: z vs. Q²

accardi@jlab.org

JLab at 22 GeV

 $\frac{HMC_T-HMC}{HMC_T}=O\Big(\frac{1}{Q^2}$

Phase space limitations

Guerrero et al., JHEP 09 (2015) 169

Figure 2. Finite-Q² fragmentation variable ζ_h versus z_h for the semi-inclusive production of (a) pions, $h = \pi$ and (b) kaons, $h = K$, at fixed values of $x_B = 0.3$ (blue curves) and 0.6 (red curves) for $Q^2 = 1$ (solid curves) and $5 \,\text{GeV}^2$ (dashed curves). The curves are shown only in the kinematically allowed z_h regions, and the boundaries between the current $(\zeta_h > \zeta_h^{(0)})$ and target $(\zeta_h < \zeta_h^{(0)})$ fragmentation regions are indicated by the open circles. $\zeta_h^{(0)} = \zeta_h(z_e = 0)$