SIDIS Monte Carlo Including Polarization Effects

EMMI Workshop: Science at the luminosity frontier: Jefferson Lab at 22 GeV

December 9-13, 2024 • LNF, Frascati, Italy

Christopher Dilks

Jefferson Lab

• Introduction: String + ³P₀ model for hadronization

- StringSpinner = Pythia + Spin in hadronization
- Comparisons with SIDIS dihadrons at CLAS in Hall B
- Outlook for 22 GeV

(Or Multiplicity) dσ

- Target Spin Asymmetry
- Double Spin Asymmetry
- For Transverse and Longitudinal polarizations

SIDIS and Spin

- Cross sections and spin asymmetries give access to structure functions
- $d\sigma_{XY} \propto F_{XY} \propto \text{PDF} \otimes \text{FF}$ • Structure functions \rightarrow distribution functions convolved with fragmentation functions $A_{LU} = \frac{d\sigma_{LU}}{d\sigma_{UU}} = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{UU}}$ Dihadron A_{LU} gives access to: $F_{LU}^{
 m twist 2} \propto f_1(x) \otimes G_1^{|\ell,m\rangle}(z,M_h,|ec{p}_T|),$ and higher twist structure functions **Unpolarized PDF** Helicity Dihadron FF (DiFF) Partial waves |I,m> Correlates to angular A. Bacchetta, M. Radici, momentum of hadron pair Phys.Rev.D 67 (2003), 094002

Structure Functions

Simulating Fragmentation: String + ³P₀ Model

- Pythia handles PDFs
 - \blacklozenge StringSpinner includes the quark transversity distribution
 - \blacklozenge This presentation focuses on dihadron A_{LU} at leading twist:

$$A_{LU}^{P_{\ell,m}(\cos heta)\sin\left(m\phi_h-m\phi_R
ight)}$$

The presented study only concerns spin effects in *fragmentation*

Figure adapted from A. Kerbizi, SPIN2023 presentation

String + ³P₀ Model

 Lund String Model for fragmentation
 Tunnelling of q-qbar pair in relative ³P₀ state

Complex mass for the ³P₀ wave function

 $\mu \in \mathbb{C}$ $\begin{array}{c} \operatorname{Re}\mu & \operatorname{Longitudinal spin effects} \\ \operatorname{Im}\mu & \operatorname{Transverse spin effects} \end{array}$

 $\mu = 0.42 + 0.76i \text{ GeV}$ from e⁺e⁻ Collins from data comparisons A. Kerbizi, X. Artru, Z. Belghobsi, F. Bradamante, A. Martin, Phys.Rev.D 97 (2018) 7, 074010

Fraction of longitudinally polarized vector mesons (VMs)

$$f_L := \frac{|G_L|^2}{2|G_T|^2 + |G_L|^2} \in [0, 1]$$

 $G_L, G_T \in \mathbb{C}$

couplings of quarks to VMs with Longitudinal (L) or Transverse (T) polarization (w.r.t. string axis)

• VM oblique polarization: interference between L and T polarization

$$\theta_{LT} := \arg\left(\frac{G_L}{G_T}\right) \in \left[-\pi, \pi\right]$$

A. Kerbizi, X. Artru, A. Martin, Phys.Rev.D 104 (2021) 11, 114038 X. Artru, A. Kerbizi, JPS Conf.Proc. 37 (2022), 020101

StringSpinner

StringSpinner = Pythia 8 + String+³P₀ model

- Uses Pythia's <u>UserHooks</u> to reweight unpolarized hadronization procedure according to the String+³P₀ model
- Angular momentum correlations with vector meson decay handled by Collins-Knowles recipe via Pythia's <u>DecayHandler</u>
- Compatible with Pythia 8.3
- Available on GitLab at https://gitlab.com/albikerbizi/stringspinner/-/tree/master
 - Maintained by Albi Kerbizi, et al.
 - ♦ Allows anyone to use the String+³P₀ model
- For usage at CLAS, we have "clas-stringspinner"
 - Available at <u>https://github.com/JeffersonLab/clas-stringspinner</u>
 - This is StringSpinner + Pythia8 tune for CLAS(12) + Front end interface for OSG
 - Simulations + reconstruction runs on <u>Open Science Grid (OSG)</u> (distributed high throughput computing)
 - May be used as a standalone event generator (currently only outputs "Lund" files)
 - Applicable for studies at 22 GeV (if we trust the tune, etc.)

StringSpinner References:

- A. Kerbizi and L. Lönnblad, Comput.Phys.Commun. 272 (2022), 108234
- A. Kerbizi and L. Lönnblad, Comput.Phys.Commun. 292 (2023), 108886
- Pythia 8.3:
- C. Bierlich, S. Chakraborty, N. Desai, L. Gellersen, I. Helenius, et al., SciPost Phys.Codeb. 2022 (2022), 8

Event Generators for CLAS

- Several generators are available on OSG
- SIDIS MC studies have been focused on using:

CLASDIS (PEPSI based)

Pythia 6

- StringSpinner is our first attempt at using Pythia 8 for our SIDIS MC studies
 - ◆ Pythia 6 \rightarrow 8 tuning parameters aren't exactly one-to-one
 - Pythia 8 defaults are different
 - Pythia 8 tuning guided by <u>CLASDIS tune</u>, which reproduces CLAS12 SIDIS data rather well

List of Generators

9

from clas12-mcgen

name	description	maintainer
<u>clasdis</u>	SIDIS MC based on PEPSI LUND MC	Harut Avakian
<u>claspyth</u>	SIDIS full event generator based on PYTHIA	Harut Avakian
<u>clas-stringspinner</u>	SIDIS PYTHIA with hadronization spin effects	Christopher Dilks
<u>dvcsgen</u>	DVCS/pi0/eta generator based on GPD and PDF parameterizations	Harut Avakian
genKYandOnePion	KY, pi0P and pi+N	Valerii Klimenko
inclusive-dis-rad	Inclusive electron and optionally radiative photon using PDFs	Harut Avakian
<u>tcsgen</u>	Timelike Compton Scattering	Rafayel Paremuzyan
<u>jpsigen</u>	J/Psi photoproduction	Rafayel Paremuzyan
<u>twopeg</u>	pi+pi- electroproduction off protons	Iuliia Skorodumina
clas12-elspectro	General electroproduction final states	Derek Glazier
MCEGENpiN_radcorr	Exclusive single pion electroproduction based on MAID	Maksim Davydov
deep-pipi-gen	Deep double pion production	Dilini Bulumulla
genepi	Photon and meson electroproduction	Noémie Pilleuxi
onepigen	Single charged pion production based on AO/Daresbury/ MAID	Nick Tyler
GiBUU	Quark and hadron propagation in nuclear media	Ahmed El Alaoui

Pythia 8 Tune for CLAS at 10.6 GeV

- NNPDF 2.3 PDFs (Pythia 8.3 default)
- SpaceShower:dipoleRecoil = off, since StringSpinner not handling multiple partons in showering process
- ISR, FSR, MPI = off
- Fragmentation Parameters
 - a = 1.2
 - b = 0.58 GeV⁻²
- Ratio of Vector Meson to Pseudoscalar meson
 - 0.7 for light quarks (ρ/π)
 - 0.75 for strange quarks (K*/K)
- Quark transverse momenta
 - p_T width: StringPT:sigma = 0.5 GeV
 - k_T width: 0.64 GeV \rightarrow understood in CLASDIS, needs <u>more study</u> in Pythia 8

 $\frac{1}{z}(1-z)^a e^{-bm_T^2/z}$

- StringSpinner Parameters: needs more precise comparison to data
 - $|G_L/G_T| = 1.4 \rightarrow f_L = 50\%$
 - $\theta_{LT} = \arg(G_L/G_T) = 0$

see backup slides for all tune parameters

- The following slides show some Data and MC comparisons
 - CLAS12 data from 10.6 GeV electrons on proton target, (inbending torus field, Run Group A, Fall 2018)
 - Full simulations and reconstruction from:
 - StringSpinner
 - CLASDIS
- Distributions are
 - SIDIS $\pi^{+}\pi^{-}$ dihadrons
 - Standard cuts used for dihadron spin asymmetry analysis \rightarrow
 - Normalized by electron yield

CLAS12 Data

C. Dilks, MC and Polarization

CLAS12 Data

About the Dihadron Invariant Mass

- Strong dependence on the free parameters
 - f_L fraction of long. pol. vector mesons \rightarrow high sensitivity of relative ratios of ρ and ω production
 - θ_{LT} oblique polarization \rightarrow mild sensitivity
- Needs more study and tuning!

CLAS12 Data

CLAS12 Data

Dihadron Spin Asymmetries

- Running full simulations with enough statistics for an asymmetry requires:
 - Large CPU usage \rightarrow Open Science Grid
 - Large disk space
- Could try generator level "pre-selection" cuts to save time and space, but may introduce bias
- For now, presenting comparisons of generator-level asymmetries, with all the same cuts applied
- Comparisons to Preliminary Results: <u>CD, Transversity 2022</u>
- Technical note: the sign of StringSpinner asymmetries had to be flipped

leading twist $\rightarrow f_1 G_1$

$$G_1 = O_{h2}^{h1} - O_{h2}^{h1}$$

• StringSpinner reproduces ρ enhancement in |2,2>, but overestimates that in |2,1>

Sign change at ρ mass in |1,1> not *quite* reproduced; may also be a relative sign issue

• Remember the invariant mass distribution is not consistent with data \rightarrow needs free-parameter tuning!

Jefferson Lab

StringSpinner Asymmetries from other Experiments

- Collins asymmetries from COMPASS are well reproduced by StringSpinner →
 - Similarly for HERMES
 - A. Kerbizi and L. Lönnblad, Comput.Phys.Commun. 292 (2023), 108886
 - ◆ And satisfactorily Belle and BaBar (e⁺e⁻)
 - A. Kerbizi, L. Lönnblad, A. Martin, Phys.Rev.D 110 (2024) 7, 074029
- Optimism for StringSpinner at CLAS
 - Need more tuning...

- In StringSpinner, should be straightforward
 - Increase electron beam energy
 - Will we need to adjust the tune?
 - Run existing (or updated) simulation and reconstruction
- May be useful for impact studies of asymmetries and cross sections
 - Need to improve the tune, among other issues...

• k_T tuning

- ◆ Evident in single-pion p_T distributions: CLASDIS agrees much better with data than StringSpinner
- Lorentz frame issue
 - Event record is in some event-dependent frame, not the lab frame
 - \blacklozenge Missing Mass and Missing Energy peaks are shifted \rightarrow impacts exclusive region
 - Boosting back does not work consistently; Pythia developers are investigating
 - Details: <u>https://gitlab.com/Pythia8/releases/-/issues/529</u>
- StringSpinner parameter tuning $\rightarrow M_h$ distribution dependence
- Asymmetry sign
- Pythia's CoM energy lower limit for validity is around 10 GeV, but CLAS12 is around 4.5 GeV

C. Bierlich, S. Chakraborty, N. Desai, L. Gellersen, I. Helenius, et al., SciPost Phys.Codeb. 2022 (2022), 8

Summary

- StringSpinner is an extension to Pythia modeling spin effects in hadronization
- Tuning Pythia 8 parameters for CLAS is in progress
- StringSpinner generates significant asymmetries, which may be useful to assist impact studies for 22 GeV
 - Consistency with data seen in several measurements (COMPASS, et al.)
- Future Improvements
 - Include polarized PDFs, e.g., Sivers and twist-3 e(x)
 - ◆ Use other channels (e.g., single-pion) to help tune free parameters

Parameter	Value	Description / Notes
Beams:frameType	2	the beams are back-to-back, but with different energies
Beams:idA	11	electron beam
Beams:idB	2212	proton target
Beams:eA	E_e	electron beam energy
Beams:eB	0	fixed proton
Random:setSeed	on	use custom RNG seed
Random:seed	set by OSG	RNG seed, controlled by caller (OSG)

Parameter	Value	Description / Notes
StringSpinner:GLGT	1.4	free parameter $ G_L/G_T $
StringSpinner:thetaLT	0	free parameter $\theta_{LT} = \arg(G_L/G_T)$
${\tt StringSpinner:qPolarisation}$	$(0,0,-\lambda_e)$	quark polarizations, where λ_e is the beam-electron helicity;
		defined with ${f q}$ for each of u, d, s, ubar, dbar, sbar
${\tt StringSpinner: targetPolarisation}$	(0, 0, 0)	unpolarized target

Pythia Tune (slide 2/3)

Parameter	Value	Description / Notes
WeakBosonExchange:ff2ff(t:gmZ)	on	Scattering $ff' \to ff'$ via γ^*/Z^0 t-channel exchange, with full
		interference between the γ^* and Z^0
PDF:pSet	13	NNPDF2.3 QCD+QED LO $\alpha_s(M_Z) = 0.130$ (the current
		Pythia 8 default)
PhaseSpace:Q2Min	1.0	minimum Q^2
PhaseSpace:pTHatMinDiverge	0.5	extra p_T cut to avoid divergences of some processes in the
		$p_T \to 0 \text{ limit (for low-}x)$
PhaseSpace:mHatMin	0.0	minimum invariant mass (for low- x)
PDF:lepton	off	do not use parton densities for lepton beams
SpaceShower:dipoleRecoil	off	string $+^{3}P_{0}$ model does not handle the more general string
		configurations involving multiple partons that would be pro-
		duced in the showering process
TimeShower:QEDshowerByL	off	disallow leptons to radiate photons
PartonLevel:FSR	off	
PartonLevel: ISR	off	
PartonLevel:MPI	off	
ProcessLevel:resonanceDecays	off	
PartonLevel:FSRinResonances	off	
HadronLevel:BoseEinstein	off	
ParticleData:modeBreitWigner	3	particles registered as having a mass width are given a mass
		in the range $m_{\min} < m < m_{\max}$, according to a truncated
		relativistic Breit-Wigner, i.e., quadratic in m

Parameter	Value	Description / Notes
StringPT:enhancedFraction	0.0	the fraction of string breaks with enhanced width
StringPT:enhancedWidth	1.0	the enhancement of the width in this fraction
StringZ:aLund	1.2	fragmentation parameter a of $\frac{1}{z}(1-z)^a e^{-bm_T^2/z}$
StringZ:bLund	0.58	fragmentation parameter b of the above
StringFragmentation:stopMass	0.0	used to define a $W_{\min} = m_{q1} + m_{q2} + \text{stopMass}$, where m_{q1}
		and m_{q2} are the masses of the two current endpoint quarks or
		diquarks; analogous to $PARJ(33)$
StringFlav:mesonUDvector	0.7	ratio of vector meson to pseudoscalar mesons, for light quarks
		(ρ/π) ; analogous to PARJ(11)
StringFlav:mesonSvector	0.75	ratio for strange quarks (K^*/K) ; analogous to PARJ(12)
StringPT:sigma	0.5	p_T width of the fragmentation process (analogous to
		PARJ(21))
BeamRemnants:primordialKT	on	allow selection of primordial k_T according to the parameter
		values
BeamRemnants:primordialKThard	0.64	initial k_T width, analogous to PARL(3) (FIXME : is this
		right?)
BeamRemnants:halfScaleForKT	0.0	set these parameters to zero, to try to make k_T width rela-
		tively constant
BeamRemnants:halfMassForKT	0.0	
BeamRemnants:primordialKTremnant	0.0	

Twist-3 Asymmetries

Twist-3 F_{LU}/F_{UU} Amplitudes

- Sensitive to transverse-spin dependent DiFF H_1 coupled with twist-3 PDF
- Important: the twist-3 PDF e(x) is not in Pythia

