The role of multi-D approach in TMD studies: COMPASS experience

BAKUR PARSAMYAN

AANL, CERN and Yamagata University

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV December 9 – 13, INFN, Laboratori Nazionali di Frascati, Italy

COMPASS timeline

- CERN SPS north area M2 beamline
- Fixed target experiment
- Approved in 1997
- Taking data since 2002 (20 years)
- The Analysis Phase started in 2023
- 33 institutions from 15 countries: ~ 200 members

COMPASS Physics Program

Nucleon structure

- Hard scattering of μ^{\pm} and π^{-} off (un)polarized P/D targets
- **Inclusive and Semi-Inclusive DIS**
- Drell-Yan and J/ψ production
- Study of nucleon spin structure
 - Longitudinal and Transverse
- Collinear and TMD pictures
- Parton distribution functions and fragmentation functions
- Last COMPASS measurement: 2022 run – transverse SIDIS

COMPASS 1st data taking

Pilot run

SIDIS L/T

Phase I

B. Parsamyan

COMPASS approval

Phase II

COMPASS proposal

Phase

COMPASS experimental setup

COmmon Muon Proton Apparatus for Structure and Spectroscopy

10 December 2024

COMPASS experimental setup: Phase II (SIDIS program)

COmmon Muon Proton Apparatus for Structure and Spectroscopy

COMPASS experimental setup: Phase II (DY program)

COmmon Muon Proton Apparatus for Structure and Spectroscopy

Nucleon spin structure (twist-2): collinear approach ↔TMDs

PDFs – universal (process independent) objects; T-odd PDFs – conditionally universal

10 December 2024

Hadron multiplicities; h^{\pm} , π^{\pm} and K^{\pm} (2016 data)

TMD

New radiative corrections (DJANGOH) hep-ex/2410.12005 submitted to PRD

10 December 2024

Hadron multiplicities; h^{\pm} , π^{\pm} and K^{\pm} (2016 data)

3D unpolarized Drell-Yan cross section on NH_3 and W

recent global fit and projections for COMPASS

- First new results in 30 years!
- Data from light/heavy targets
 - NH₃-He, Al, W
 - Nuclear dependence
- 1D/2D/3D representations x_F:q_T:M
- Unique data to access collinear and TMD distributions
 e.g. pion TMD PDF
- To be included in future global fits (MAP, JAM, etc.)

10 December 2024

SIDIS TSAs: Sivers effect

 $\frac{u \sigma}{dx dy dz dp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) + \dots\right\}$

$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M}f_{1T}^{\perp q}D_{1q}^h\right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$

- **COMPASS-HERMES** discrepancy
- T-oddness: sign-change (SIDIS \leftrightarrow Drell-Yan)
 - Explored by COMPASS
- New precise deuteron data from COMPASS
 - Unique input to constrain (TMD) PDF

COMPASS 2022 run: new unique deuteron data

COMPASS Multi-D TSA analyses

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_s)} \sin\left(\phi_h + \phi_s\right) \dots \right\}$

Polarized SIDIS and DY – factorization and kinematic regions

Polarized SIDIS and DY – factorization and kinematic regions

10 December 2024

B. Parsamyan

 $x_{
m Bj}$

Polarized SIDIS and DY – factorization and kinematic regions

M. Bury, A. Prokudin and A. Vladimirov JHEP 05 (2021) 151

Cahn effect in SIDIS

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right)$$

$$\times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + ...)$$
Cahn effect

$$\int_{1}^{1} (x, \mathbf{k}_T^2)$$
number density
$$\overbrace{\boldsymbol{\omega}}$$

As of 1978 – simplistic kinematic effect:

non-zero k_T induces an azimuthal modulation ٠

As of 2023 – complex SF (twist-2/3 functions)

Measurements by different experiments ۰

Cahn effect in SIDIS

$$\frac{d\sigma}{dxdydzdp_{T}^{2}d\phi_{d}\phi_{g}} = \begin{bmatrix} \frac{a}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{y^{2}}{2x}\right) \end{bmatrix} (F_{UU,T} + \varepsilon F_{UU,L})$$

$$\times (1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{conde}\cos\phi_{h} + ...)$$
Cahn effect

$$\int_{1}^{q}(x,k_{T}^{2})$$
minuter density

$$\overbrace{\bullet}^{f_{1}}(x,k_{T}^{2})$$
number density

$$\overbrace{\bullet}^{f_{1}}(x,k_{T}^{2})$$
As of 1978 – simplistic kinematic effect:
• non-zero k_{T} induces an azimuthal modulation
As of 2023 – complex SF (twist-2/3 functions)
• Measurements by different experiments

$$F_{UU}^{conde} = \frac{2M}{Q} C \left\{ -\frac{\hat{h} \cdot p_{T}}{M_{h}} \left(xhH_{lg}^{1,h} + \frac{M_{h}}{M} f_{lg}^{q} \frac{\tilde{D}_{4}^{1,h}}{z} - \frac{\hat{h} \cdot k_{T}}{M} \left(xf^{1/4}D_{lg}^{h} + \frac{M_{h}}{M} h_{lg}^{lg} \frac{\tilde{D}_{4}^{1,h}}{z} \right) - \frac{\hat{h} \cdot k_{T}}{M} \left(xf^{1/4}D_{lg}^{h} + \frac{M_{h}}{M} h_{lg}^{lg} \frac{\tilde{H}_{4}^{h}}{z} \right) \right\}$$

20

B. Parsamyan

10 December 2024

$d\sigma$ $dxdydzdp_T^2 d\phi_h d\phi_s$ $\left|\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right|\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$ $\times (1 + \sqrt{2\varepsilon(1+\varepsilon)} A_{UU}^{\cos\phi_h} \cos\phi_h + ...)$ Cahn effect $f_1^q(x, k_T^2)$ number density

As of 1978 – simplistic kinematic effect:

non-zero k_{T} induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

Measurements by different experiments

$$\mu \qquad \mu'$$

$$\gamma^* \qquad h$$

$$N \qquad P \qquad X$$

$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + ...)$ Cahn effect $\int_{1}^{1} f_1^q(x, \mathbf{k}_T^2)$ number density

As of 1978 – simplistic kinematic effect:

• non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections (RC), etc.

B. Parsamyan

22

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + ...)$$
Cahn effect
$$\int_{1}^{q} (x, \mathbf{k}_T^2)$$
number density

As of 1978 – simplistic kinematic effect:

• non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections (RC), etc.

Kinematic dependences of SDMEs Measured (1D), not yet implemented in HEPgen

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + ...)$$
Cahn effect
$$\int_{1}^{1} f_1^q(x, \mathbf{k}_T^2)$$
number density

As of 1978 – simplistic kinematic effect:

• non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, -0.5 radiative corrections (RC), etc.

Only "average" SDMEs are implemented in HEPgen They seem to describe the data well

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + ...)$$
Cahn effect
$$\int_{1}^{1} f_1^q(x, \mathbf{k}_T^2)$$
number density

As of 1978 – simplistic kinematic effect:

non-zero k_{T} induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \\ \times \left(1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h}\cos2\phi_h + \lambda\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\phi_h}\sin\phi_h + \ldots\right)$$

Cahn, Boer-Mulders and beam-spin UAs

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections (RC), etc.
- Sizable effect of corrections for the Boer-Mulders asymmetry (low *x*)
- Corrections for the beam-spin asymmetry appear to be small

Cahn effect in SIDIS: DVMs and RCs

$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + ...)$ Cahn effect $\int_{1}^{1} (x, \mathbf{k}_T^2)$ number density

As of 1978 – simplistic kinematic effect:

• non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections (RC), etc.
- Strong Q² dependence unexplained
 - Do not seem to come from RCs
 - Transition TMD ↔ collinear regions?

Cahn effect in SIDIS: DVMs and RCs

$d\sigma$ RC corrections, applied $dxdydzdp_T^2 d\phi_h d\phi_s$ COMPASS preliminary $\mu p \rightarrow \mu' h^+ X$ • RC □ no RC $\left|\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right|\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$ -0.05 × $(1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h+...)$ -0.1• RC $\mu p \rightarrow \mu' h^- X$ no RC Cahn effect $f_1^q(x, k_T^2)$ number density -0.05 10^{-2} 10^{-1} 0.2 0.6 0.40.5 $P_{\rm T}$ (GeV/c)

As of 1978 – simplistic kinematic effect:

non-zero k_{T} induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections (RC), etc.
- Strong Q^2 dependence unexplained
 - Do not seem to come from RCs
 - Transition TMD \leftrightarrow collinear regions?

Z.

X

10 December 2024

Azimuthal effects in unpolarized SIDIS

 $d\sigma$ $dxdydzdp_T^2 d\phi_h d\phi_s$ Target spin independent part of the $\left|\frac{\alpha}{xvQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right|\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$ cross-section: three asymmetries $\times (1 + \sqrt{2\varepsilon (1 + \varepsilon)} A_{UU}^{\cos \phi_h} \cos \phi_h + \varepsilon A_{UU}^{\cos 2\phi_h} \cos 2\phi_h + \lambda \sqrt{2\varepsilon (1 - \varepsilon)} A_{LU}^{\sin \phi_h} \sin \phi_h + \dots)$ COMPASS preliminary 2016 proton data • h⁻ **NEW** • • h+ $\mu p \rightarrow \mu' h X$ 0 -0.05 $A_{\rm UU}^{\cos 2\phi}$ -0.05 $A_{\rm LU}^{\rm sin} \phi_{\rm LU}^{\rm sin} 0.05^{\ddagger}$ $0.1 < P_{\rm T} / ({\rm GeV}/c) < 1.00$ 0.2 < z < 0.850.2 <*z* < 0.85 $0.1 \le P_{\rm T} / ({\rm GeV}/c) \le 1.00$ -0.05 10^{-2} 0.2 0.4 0.6 0.5 10^{-1} $P_{\rm T} \, ({\rm GeV}/c)$ Z. Working on 3D kinematic dependences

Cahn effect Different for h+, h⁻ Non-trivial Q² dependence

Boer-Mulders effect Collins-like behavior (h+h⁻ - mirror symmetry)

Beam-spin asymmetry higher-twist effect non-zero, positive trend

SIDIS: target longitudinal spin dependent asymmetries

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L\lambda\sqrt{1 - \varepsilon^2}A_{LL} + \dots\right\}$$

 $A_{\rm LL}$

0

$$F_{LL}^1 = \mathcal{C}\left\{\boldsymbol{g}_{1L}^{\boldsymbol{q}}\boldsymbol{D}_{1\boldsymbol{q}}^{\boldsymbol{h}}\right\}$$

- Measurement of (semi-)inclusive $A_1(A_{II})$ is one of the key physics topics of HERMES/COMPASS
- Large amount of P/D data
- No P_T-dependence observed

SIDIS: target longitudinal spin dependent asymmetries

$$\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \lambda \sqrt{1 - \varepsilon^2} A_{LL} + \dots\right\}$$

$$F_{LL}^1 = \mathcal{C}\left\{\boldsymbol{g}_{1L}^{\boldsymbol{q}}\boldsymbol{D}_{1\boldsymbol{q}}^{\boldsymbol{h}}\right\}$$

- Measurement of (semi-)inclusive A₁(A_{LL}) is one of the key physics topics of HERMES/COMPASS
- Large amount of P/D data
- No P_T-dependence observed

10 December 2024

SIDIS TSAs: Kotzinian-Mulders asymmetry

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + \lambda S_T \sqrt{\left(1 - \varepsilon^2\right)} A_{LT}^{\cos(\phi_h - \phi_s)} \cos\left(\phi_h - \phi_s\right) + \dots\right\}$

COMPASS/HERMES/CLAS6 results $A_{LT}^{\cos(\phi_h - \phi_S)}$

- Only "twist-2" ingredients
- Sizable non-zero effect for h⁺ !
- Similar effect at HERMES

COMPASS, PBL 770 (2017) 138; PoS QCDEV2017 (2018) 042

M. Horstmann, A. Schafer and A. Vladimirov

First global QCD analysis of the g_{1T} TMD PDF using SIDIS data

10 December 2024

JLab from 12 GeV, SoLID to 22 GeV

- High luminosity, complementary kinematic coverages, evolution studies, all TMDs, etc.
- Together with EIC/EICc complete picture!

10 December 2024

Conclusions

"Nature"

Raphael "Madonna del Prato" 10 December 2024

Salvador Dali "Maximum Speed of Raphael's Madonna"

Thank you!

"Nature"

Raphael "Madonna del Prato" 10 December 2024

"multi-D" with available statistics

Raphael "Madonna del Prato" (poor resolution)

HERMES: Sivers effect and diffractive VMs

- The asymmetry drops at large z for pion
 - Not the case for kaons
- Can it be caused by exclusive diffractive VMs?
- The contamination indeed grows with z for pions
 - At the level of 10% for kaons

B. Parsamyan

HERMES: Sivers effect and diffractive VMs

- The asymmetry drops at large z for pion
 - Not the case for kaons
- Can it be caused by exclusive diffractive VMs?
- The contamination indeed grows with z for pions
 - At the level of 10% for kaons
- Similar effect in COMPASS?
- Not clear with Collins

10 December 2024

SIDIS TSAs: subleading twist effects

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \sqrt{2\varepsilon \left(1 + \varepsilon\right)} A_{UT}^{\sin\phi_s} \sin\phi_s + \dots\right\}$

 $A_{UT}^{sin\phi_s}$

COMPASS/HERMES results $A_{UT}^{\sin\phi_S}$

- Q-suppression
- various "twist-2/3" ingredients
- non-zero signal for h[±] at large z?
- Survives integration of hadron p_T
 - gives access to transversity PDF (without involving convolution over k_T)

See Daniel Pitonyak's talk

COMPASS, PBL 770 (2017) 138; PoS QCDEV2017 (2018) 042 COMPASS • h⁺ proton 2010 data z > 0.1▲ h⁻ 0.02 -0.02 10^{-2} 10^{-1} 0.2 0.4 0.6 0.8 0.5 1.5 p_{T} (GeV/c) х ZHERMES, JHEP 12 (2020) 010 0.14 $\left\langle \text{sin}(\phi_{\text{S}}) \mid (2\epsilon(1+\epsilon))^{1/2} \right\rangle_{U_{\text{J}}}$ N_{VM}/N : π^{\dagger} π^+ Δ 0.12 0.1 0.08 0.3 0.06 0.04 0.02 0 -0.02 -0.04 2 0.04 N_{VM}/N: π⁻ 0.02 π 0.60 -0.02 -0.04-0.06 -0.08 -0.1 -0.12 -0.14 0.2 0.5 1 P_{h⊥} [GeV] 38 0.1 0.5 1 0 х z B. Parsamyan

COMPASS: Exclusive and Inclusive ρ^0 TSAs

