Parity Violating DIS at 22 GeV with SoLID

Michael Nycz

Special Thanks to Matteo Cerutti and Richard Whitehill, Xiaochao Zheng, and the SoLID Collaboration

Three Pillars of the SoLID Program

Three Pillars of the SoLID Program

SoLID PVDIS 11 GeV Program

1. Parity Violating DIS on Isoscalar Deuteron

- a. Precision determination of electroweak parameters
- b. Beyond-the-Standard Model (BSM) physics search

2. Parity Violating DIS on Proton Target

a. d/u measurement

3. Parity Violating EMC Effect

a. Isospin dependence of the EMC effect by the use of neutron-rich isotopes

SoLID PVDIS 11 GeV Program

1. Parity Violating DIS on Isoscalar Deuteron

- a. Precision determination of electroweak parameters
- b. Beyond-the-Standard Model (BSM) physics search

2. Parity Violating DIS on Proton Target

a. d/u measurement

3. Parity Violating EMC Effect

a. Isospin dependence of the EMC effect by the use of neutron-rich isotopes

SoLID PVDIS Program: Isoscalar Deuteron

$$\boldsymbol{A_{PV}^{(e)}} \equiv \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{d\sigma_e}{d\sigma_0}$$

In Deep Inelastic Scattering regime

$$A_{PV} = -\frac{G_{\rm F}Q^2}{4\sqrt{2}\pi\alpha}[a_1 + a_3Y]$$

$$a_1(x) = 2g_A^e rac{F_1^{\gamma Z}}{F_1^{\gamma}} \qquad a_3(x) = g_V^e rac{F_3^{\gamma Z}}{F_1^{\gamma}}$$

$$k = (E, \vec{k})$$

 $k' = (E', \vec{k'})$
 γ^{0}
 $P = (M, 0)$
 $P = (M, 0)$
 $P = (M, 0)$

Isoscalar Deuteron Target

$$A_{PV,(d)}^{SM} = \frac{3G_F Q^2}{10\sqrt{2}\pi\alpha} \left[(2g_{AV}^{eu} - g_{AV}^{ed}) + R_V Y (2g_{VA}^{eu} - g_{VA}^{ed}) \right]$$

SoLID PVDIS Program: Isoscalar Deuteron

Simultaneous fit of $(2g_{AV}^{eu} - g_{AV}^{ed})$ and $(2g_{VA}^{eu} - g_{VA}^{ed})$

SoLID PVDIS 22 GeV Program

- 50 μA e⁻ beam incident on 40cm liquid deuterium target
- Scaled by trigger efficiency
- DIS kinematic cut: W > 2
- Acceptance cut for nominal target position (z = 10cm): 22° < θ < 35°

Rates (Hz) at 22 GeV

Uncertainties: Statistical and (Experimental) Systematics

Statistical uncertainty

Experimental systematic uncertainties

Source	Relative Uncertainty dA/A		
Beam polarization	0.4%		
Q^2 determination	0.2%		
Event reconstruction	0.2%		
Radiative correction	0.2%		

Completely correlated ($\sigma_{\rm corr}/A = 0.45\%$) Uncorrelated ($\sigma_{\rm uncorr}/A = 0.28\%$)

PDF Uncertainties

- PDF uncertainties were determined following the prescription of each PDF set
- Hessian PDF Sets

$$(\Sigma_{\text{PDF}}^2)_{bb'} = \frac{1}{4} \sum_{m=1}^{N_{\text{PDF}}/2} (A_{2m,b} - A_{2m-1,b}) (A_{2m,b'} - A_{2m-1,b'})$$

Replica PDF Sets

$$(\Sigma_{\rm PDF}^2)_{bb'} = rac{1}{N_{
m PDF}} \sum_{m=1}^{N_{
m PDF}} (A_{m,b} - A_{0,b}) (A_{m,b'} - A_{0,b'})$$

Accounted for both diagonal
and off-diagonal elements
of PDF uncertainty
$$\Sigma_{pdf}^2 = \begin{bmatrix} \sigma_{1,pdf}^2 & \sigma_{1,pdf} \sigma_{2,pdf} \cdots & \sigma_{1,pdf} \sigma_{N_{bin,pdf}} \\ \sigma_{2,pdf}^2 & \cdots & \sigma_{2} \sigma_{N_{bin,pdf}} \\ \ddots & \vdots \\ \sigma_{N_{bin,pdf}}^2 \end{bmatrix}$$

Fitting Procedure

1. Generate Pseudo data

$$(A_{\rm PV})_b^{\rm pseudo} = (A_{\rm PV})_b^{\rm SM} + r_b \sqrt{\sigma_{\rm stat,b}^2 + \left[(A_{\rm PV})_b^{\rm SM} \frac{\sigma_{\rm uncorr}}{A} \right]_b^2} + r' (A_{\rm PV})_b^{\rm SM} \left(\frac{\sigma_{\rm corr}}{A} \right)_b$$

2. Preform χ^2 minimization

$$\chi^2 = [\mathcal{A}^{\mathrm{pseudo}} - \mathcal{A}^{\mathrm{fit}}][(\Sigma^2)^{-1}][\mathcal{A}^{\mathrm{pseudo}} - \mathcal{A}^{\mathrm{fit}}]^{\mathcal{T}}$$

Where

$$egin{aligned} (A_{\mathrm{PV}})^{\mathrm{fit}}_b &= (A_{\mathrm{PV}})^{\mathrm{SM}}_b \left[\sin^2 heta_W
ight] \left(1 + rac{eta_{\mathrm{HT}}}{(1-x)^3 Q^2} + eta_{\mathrm{CSV}} x^2
ight) \ & \left[\mathcal{C}_{1q}, \mathcal{C}_{2q}
ight] \end{aligned}$$

SoLID PVDIS Program: Isoscalar Deuteron

22 GeV best fit provides a ~10% reduction in vertical constraint vs 11 GeV

SoLID PVDIS 22 GeV Program: Proton

Proton measurement

- ✤ Lack of free neutron target
 - ➤ Nuclear corrections in the deuteron (large uncertainties)
 - > Measurement of $d/u \rightarrow$ challenging at high x
- BoNuS (Barely Off-Shell Neutron Structure)
- MARATHON (Ratio of A=3 mirror nuclei)
- SoLID PVDIS on the **Proton**
 - > d/u obtained free nuclear effects

$$A_{PV,(p)} = \frac{3G_F Q^2}{2\sqrt{2}\pi\alpha} \frac{\left(2g_{AV}^{eu} - \frac{d}{u}g_{AV}^{ed}\right) + Y[2g_{VA}^{eu} - \frac{d}{u}g_{VA}^{ed}]}{4 + \frac{d}{u}}$$

SoLID PVDIS Strange Quark

PVDIS analysis utilizing a joint QED-QCD framework

→ Information on the nucleon's light sea and strange content

Advantages of 22 GeV measurement:

- 1. Higher Q^2 suppresses power corrections
- 2. Expands the x region suitable for analysis within a joint QED+QCD factorization framework

R. Whitehill, M. M. Dalton, T. Liu, W. Melnitchouk, J. Qiu, and N. Sato

SoLID PVDIS Strange Quark

R. Whitehill, M. M. Dalton, T. Liu, W. Melnitchouk, J. Qiu, and N. Sato

SoLID PVDIS Strange Quark Projections

cience

Richard Whitehill, SoLID Opportunities and Challenges (2024)

New Possibilities to Explore for 22 GeV: Strong PV

- Proton internal structure in mirrored world
 - \circ QCD \rightarrow invariant under Parity transformation
 - \circ Parity conservation in strong interactions \rightarrow not guaranteed

Alessandro Bacchetta, Matteo Cerutti, Ludovico Manna, Marco Radici, and Xiaochao Zheng

Weak Mixing Angle at the EIC

- High luminosity machine > $(10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
- Large center-of-mass energy range
 √21-140 GeV
- ◆ Polarized e⁻, protons and light ions beams
 > ≥70%
- Ions beam from deuteron to heavier nuclei
 - ➢ Gold, lead, or uranium

Electron Energy [GeV]	Proton Energy [GeV]	Annual Luminosity [fb ⁻¹]	Electron Energy [GeV]	Deuteron Energy [GeV]	Annual Luminosity [fb ⁻¹]
5	41	4.4	5	41	4.4
5	100	36.8	5	100	36.8
10	100	44.8	10	100	44.8
10	275	100	10	137	100
18	275	15.4	18	137	15.4
18	275	100			

Extraction of the Weak Mixing Angle at the EIC

$$A_{RL}^{e^-} = \frac{|\lambda|\eta_{\gamma Z} \left[g_A^e 2y F_1^{\gamma Z} + g_A^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma Z} + g_V^e (2 - y) F_3^{\gamma Z}\right]}{2y F_1^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma} - \eta_{\gamma Z} \left[g_V^e 2y F_1^{\gamma Z} + g_V^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma Z} + g_A^e (2 - y) F_3^{\gamma Z}\right]}$$

• Extraction of $\sin^2 \theta_W$ from minimization of the χ^2

$$\chi^2 = \left[A^{pseudo-data} - A^{theory}\right]^T (\Sigma^2)^{-1} \left[A^{pseudo-data} - A^{theory}\right]$$
Uncertainty Matrix
• A^{theory} is a function of $\sin^2 \theta_W$ via the weak neutral
couplings
• Single parameter fit to extract $\Rightarrow \sin^2 \theta_W$

R. Boughezal et al., Neutral-current electroweak physics and SMEFT studies at the EIC, Phys. Rev. D

Statistical and beam polarimetry uncertainties dominate; moderate precision in an **unmeasured energy region**, multi-year run would help Combining ep + eD results, approach the sensitivity of Yellow Report: ~±0.00097

Summary and Outlook

- SoLID PVIDS has a strong 11 GeV program
 - Precision measurements of electroweak parameters
 - $\circ d/u$
- SoLID PVIDS at 22 GeV could expand
- Exciting new studies using measured A_{nv} of SoLID at 22 GeV
 - Explore s^+
 - Search for strong PV
- At the EIC / ePIC
 - Can measure $\sin^2(\theta)$ in an unmeasured energy range
 - Bridging region between fixed target and collider experiments

EIC Kinematic range

Charged Lepton Flavor Violation

Charged Lepton Flavor Violation: Decay Channel(s)

<u>1 Prong</u>

 $\tau \rightarrow \mu \nu_{\tau} \nu_{\tau}$

- 1. Larger branching ratio ~ 17%
- 2. Suppression of SM background
- 3. Needs (good) μ identification

<u>3 Prong (from $e \rightarrow \tau$)</u>

$$\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$$

1. Identification is easier than 1 prong channel

Charged Lepton Flavor Violation at the EIC