# Measurements of $\alpha_s$ with JLab@22 GeV

A. Deur, Jefferson Lab

12/09/2024

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV. INFN Frascati.

- Measurement of  $\alpha_s(M_z^2)$
- Mapping of  $\alpha_s(Q^2)$  for  $1 < Q^2 < 22 \text{ GeV}^2$



• $\alpha_s$ : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling:





• $\alpha_s$ : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling:



•Large efforts ongoing to reduce  $\Delta \alpha_s / \alpha_s$  (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine  $\alpha_s$ .

 $\Rightarrow$  Strategy: <u>combine many independent measurements with larger uncertainties</u>. Currently, best individual experimental determinations are ~1%-2% level.



• $\alpha_s$ : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling:



•Large efforts ongoing to reduce  $\Delta \alpha_s / \alpha_s$  (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine  $\alpha_s$ .

 $\Rightarrow$  Strategy: <u>combine many independent measurements with larger uncertainties</u>. Currently, best individual experimental determinations are ~1%-2% level.

•Good prospects of measuring precisely  $\alpha_s(M_z)$  at JLab@22 GeV with Bjorken sum rule:

$$\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x,Q^2) dx = \frac{1}{6} g_A \left[ 1 - \frac{\alpha_s}{\pi} \cdots \right]$$



Measuring  $\alpha_s(M_z)$ 

$$\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x, Q^2) dx = \frac{1}{6} g_A \left[ 1 - \frac{\alpha_s}{\pi} \cdots \right]$$

• $\Gamma_1^{p-n}(Q^2)$ : well known pQCD quantity: N<sup>5</sup>LO estimate +  $\alpha_s$  at 5-loop  $\Rightarrow$  Minimal pQCD truncation error.

•No need for absolute measurement:  $Q^2$ -dependence of  $\Gamma_1^{p-n}(Q^2)$  provides  $\alpha_s$ .

•Non-perturbative modeling, such PDFs, not needed (Sum rule.  $g_A$  well measured but unimportant for assessing relative  $Q^2$ -dependence).

•Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).





Measuring  $\alpha_s(M_z)$  $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\left[1 - \frac{\alpha_s}{\pi}\cdots\right]$ 

• $\Gamma_1^{p-n}(Q^2)$ : well known pQCD quantity: N<sup>5</sup>LO estimate +  $\alpha_s$  at 5-loop  $\Rightarrow$  Minimal pQCD truncation error.

•No need for absolute measurement:  $Q^2$ -dependence of  $\Gamma_1^{p-n}(Q^2)$  provides  $\alpha_s$ .

•Non-perturbative modeling, such PDFs, not needed (Sum rule.  $g_A$  well measured but unimportant for assessing relative  $Q^2$ -dependence). •Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).



Measuring  $\alpha_s(M_z)$  $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\left[1 - \frac{\alpha_s}{\pi}\cdots\right]$ 

• $\Gamma_1^{p-n}(Q^2)$ : well known pQCD quantity: N<sup>5</sup>LO estimate +  $\alpha_s$  at 5-loop  $\Rightarrow$  Minimal pQCD truncation error.

•No need for absolute measurement:  $Q^2$ -dependence of  $\Gamma_1^{p-n}(Q^2)$  provides  $\alpha_s$ .

•Non-perturbative modeling, such PDFs, not needed (Sum rule.  $g_A$  well measured but unimportant for assessing relative  $Q^2$ -dependence). •Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).





• $\Gamma_1^{p-n}(Q^2)$ : well known pQCD quantity: N<sup>5</sup>LO estimate +  $\alpha_s$  at 5-loop  $\Rightarrow$  Minimal pQCD truncation error.

•No need for absolute measurement:  $Q^2$ -dependence of  $\Gamma_1^{p-n}(Q^2)$  provides  $\alpha_s$ .

•Non-perturbative modeling, such PDFs, not needed (Sum rule.  $g_A$  well measured but unimportant for assessing relative  $Q^2$ -dependence).

•Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).

•With polarized NH<sub>3</sub> and <sup>3</sup>He targets: 5% systematics (experimental, i.e., not counting low-*x* uncert. Mitigated for  $Q^2$ -dep. meas.)



Jefferson Lab Thomas Jefferson National Accelerator Facility Exploring the Nature of Matter



• $\Gamma_1^{p-n}(Q^2)$ : well known pQCD quantity: N<sup>5</sup>LO estimate +  $\alpha_s$  at 5-loop  $\Rightarrow$  Minimal pQCD truncation error.

•No need for absolute measurement:  $Q^2$ -dependence of  $\Gamma_1^{p-n}(Q^2)$  provides  $\alpha_s$ .

•Non-perturbative modeling, such PDFs, not needed (Sum rule.  $g_A$  well measured but unimportant for assessing relative  $Q^2$ -dependence).

•Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).

•With polarized NH<sub>3</sub> and <sup>3</sup>He targets: 5% systematics (experimental, i.e., not counting low-x uncert. Mitigated for  $Q^2$ -dep. meas.)



 Thomas Jefferson National Accelerator Facility Exploring the Nature of Matter



• $\Gamma_1^{p-n}(Q^2)$ : well known pQCD quantity: N<sup>5</sup>LO estimate +  $\alpha_s$  at 5-loop  $\Rightarrow$  Minimal pQCD truncation error. •No need for absolute measurement:  $Q^2$ -dependence of  $\Gamma_1^{p-n}(Q^2)$  provides  $\alpha_s$ . •Non-perturbative modeling, such PDFs, not needed (Sum rule.  $g_A$  well measured but unimportant for assessing relative  $Q^2$ -dependence).

•Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).

erson Lab

Exploring the Nature of Matter





• $\Gamma_1^{p-n}(Q^2)$ : well known pQCD quantity: N<sup>5</sup>LO estimate +  $\alpha_s$  at 5-loop  $\Rightarrow$  Minimal pQCD truncation error. •No need for absolute measurement:  $Q^2$ -dependence of  $\Gamma_1^{p-n}(Q^2)$  provides  $\alpha_s$ . •Non-perturbative modeling, such PDFs, not needed (Sum rule.  $g_A$  well measured but unimportant for assessing relative  $Q^2$ -dependence).

•Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).



### Measuring $\alpha_s$

Another possibility: Do an absolute measurement of  $\Gamma_1^{p-n}(Q^2)$  and solve the Bj SR for  $\alpha_s(Q^2)$ : •One  $\alpha_s$  per  $\Gamma_1^{p-n}$  experimental data point.

•Lower systematic accuracy makes this not competitive for  $\alpha_s(M_z)$ .

•Small uncorrelated uncertainty ( $Q^2$ -dependence) provides good relative  $\alpha_s(Q^2)$  mapping.



rson National Accelerator Facility

Exploring the Nature of Matter

 $\Rightarrow$ Sensitivity to high-order QCD loops that have not yet been directly measured.













A. Deur. JLab@22 GeV. INFN Frascati. 12/09/2024

Thomas Jefferson National Accelerator Facility Exploring the Nature of Matter



A. Deur. JLab@22 GeV. INFN Frascati. 12/09/2024

Exploring the Nature of Matter

#### What do we learn from measuring 2-loop corrections?









oring the Nature of Matte

#### What do we learn from measuring 2-loop corrections?











| What do we learn from measuring 2-loop corrections?                                   |                                 |              |
|---------------------------------------------------------------------------------------|---------------------------------|--------------|
| 1-loop LO ( $\beta_0$ )                                                               | 2-loop NL                       | $O(\beta_1)$ |
|                                                                                       | $m_{\text{m}} m_{\text{m}}$     |              |
|                                                                                       | - Com micin                     |              |
|                                                                                       | magen with                      |              |
|                                                                                       | $\beta_1$ : effects beyond OCD. | Å            |
|                                                                                       |                                 |              |
|                                                                                       | min min                         |              |
|                                                                                       | mom mom                         | A A A        |
|                                                                                       | (mon) (mon)                     | A te to      |
|                                                                                       | $\Delta$                        | $\lambda$    |
| Jefferson Lab<br>Thomas Jefferson National Accelera<br>Exploring the Nature of Matter |                                 |              |

# Conclusions

- Of the 4 fundamental couplings,  $\alpha_s$  has by far the lowest accuracy.
- Accurate experimental determinations of  $\alpha_s(Q^2)$  are crucial for QCD, SM and beyond SM studies.

•The Bjorken sum  $\Gamma_1^{p-n}(Q^2) = \int g_1^{p-n}(x, Q^2) dx$  offers a simple and competitive method to determine  $\alpha_s$ .

- •Study indicates that JLab@22 GeV can provide a determination of  $\alpha_s(M_Z^2)$  at the ~0.6% level.
- •Polarized data at low-*x* from EIC are essential. A EIC-only determination of  $\alpha_s(M_Z)$  with the Bjorken sum would reach a ~1.3% accuracy.
- •This is but one of several ways to determine  $\alpha_s(M_Z^2)$  with JLab@22. Others, e.g., global fits of (un)polarized PDFs should also provide competitive measurements. Put together, they have the potential to be provide a leading contribution toward a better determination of  $\alpha_s$ .
- One may also map the  $Q^2$ -dependence of  $\alpha_s(Q^2)$  in the 1-22 GeV<sup>2</sup> domain.
  - • $Q^2 < 5.3 \text{ GeV}^2$ : JLab@22 mapping sensitive to 2-loop ( $\beta_1$ ) effect. First time this would be the case.
  - •Effects beyond QCD start at  $\beta_1$ . (None at  $\beta_0$ )
  - •Mapping tests QCD and opens a new window for BSM physics.
  - •Sensitivity to BSM needs to be calculated.

# Thank you



## Back-up slides



• $\alpha_s$ : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling:  $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \Delta G_F / G_F \simeq 10^{-6}, \Delta G_N / G_N \simeq 10^{-5})$ 

•Large efforts ongoing to reduce  $\Delta \alpha_s / \alpha_s$  (Snowmass 2022, J.Phys.G 51 (2024) 9, 090501 arXiv:2203.08271)

•No "silver bullet" experiment can exquisitely determine  $\alpha_s$ .

⇒ Strategy: combine many independent measurements with larger uncertainties.

Currently, best individual experimental determinations are ~1%-2% level.









Exploring the Nature of Matter

#### Bjorken sum rule $\Gamma_{1}^{p-n} \equiv \int g_{1}^{p-n} dx = \frac{1}{6} g_{A} \left[ 1 - \frac{\alpha_{s}}{\pi} - 3.58 \left( \frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left( \frac{\alpha_{s}}{\pi} \right)^{3} - 175.7 \left( \frac{\alpha_{s}}{\pi} \right)^{4} - \sim 893 \left( \frac{\alpha_{s}}{\pi} \right)^{5} \right] + \frac{M^{2}}{Q^{2}} \left[ a_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) + 4f_{2}(\alpha_{s}) \right] + \dots$ Nucleon's First spin structure function $Q^{2} \to \infty \text{ limit}$ Nucleon axial charge. (Value of $\Gamma_{1}^{p-n}(Q^{2})$ in the $Q^{2} \to \infty \text{ limit}$ PQCD radiativeNon-perturbative $1/Q^{2n}$ power corrections. (+rad. corr.)

 $\Rightarrow$  Two possibilities to extract  $\alpha_s(M_Z)$ :

•Do an absolute measurement of  $\Gamma_1^{p-n}(Q^2)$  and solve the Bj SR for  $\alpha_s(Q^2)$ .

- •One  $\alpha_s$  per  $\Gamma_1^{p-n}$  experimental data point.
- •Poor systematic accuracy, typically  $\Delta \alpha_s / \alpha_s \sim 10\%$  at high energy  $\Rightarrow$  Not competitive.

Measurement of Q<sup>2</sup>-dependence of Γ<sub>1</sub><sup>p-n</sup>(Q<sup>2</sup>).
Need Γ<sub>1</sub><sup>p-n</sup> at several Q<sup>2</sup> points. Only one (or a few) value of α<sub>s</sub>.
Good accuracy: 1990's CERN/SLAC data yielded: α<sub>s</sub>(M<sub>Z</sub>)=0.120±0.009 Altarelli, Ball, Forte, Ridolfi, Nucl.Phys. B496 337 (1997)



# Bjorken sum rule at JLab@22 GeV

•Statistical uncertainties are expected to be negligible:

•JLab is a high-luminosity facility;

son Lab

ng the Nature of Matte

on National Accelerator Facilit

•A JLab@22 GeV program would include polarized DVCS and TMD experiments. Those imply long running times compared to those needed for inclusive data gathering;

•High precision data already available from 6 GeV and 12 GeV for the lower  $Q^2$  bins and moderate *x*.

•Looking at the 6 GeV CLAS EG1dvcs data, required statistics for DVCS and TMD experiments imply statistical uncertainties < 0.1% on the Bjorken sum. For the present exercise we will use 0.1% on all  $Q^2$ -points with  $Q^2$ -bin sizes increasing exponentially with  $Q^2$ .

•Use 5% for experimental systematics (i.e. not including the uncertainty on unmeasured low-*x*).
•Nuclear corrections:

D: negligible assuming we can tag the ~spectator proton
•<sup>3</sup>He: 2% (5% on n, which contribute to 1/3 to the Bjorken sum: 5%/3=2%)

•Polarimetries: Assume ΔP<sub>e</sub>-ΔP<sub>N</sub>= 3%.
•Radiative corrections: 1%
•F<sub>1</sub> to form g<sub>1</sub> from A<sub>1</sub>: 2%
•g<sub>2</sub> contribution to longitudinal asym: Negligible, assuming it will be measured.
•Dilution/purity:

•Bjorken sum from P & D: 4%
•Bjorken sum from P & 3He: 3%

•Contamination from particle miss-identification: Assumed negligible.
•Detector/trigger efficiencies, acceptance, beam currents: Neglected (asym).

#### Under these assumptions:

Exploring the Nature of Matter











## Comparison with EIC



## Low-*x* uncertainty

•For the  $Q^2$  bins covered by EIC, global fits will be available up to the lowest *x* covered by EIC.  $\Rightarrow$  assume 10% uncertainty on that missing (for the JLab measurement) low-*x* part. Assume 100% for the very small-*x* contribution not covered by EIC.

•For the 5 lowest  $Q^2$  bins not covered by EIC:

Bin #5 close to the EIC coverage ⇒ Constrained extrapolation, assume 20% uncertainty on missing low-x part.
Bin #4, assume 40% uncertainty, Bin #3, assume 60%, Bin #2, assume 80%, Bin #1, assume 100%.



### Bjorken sum rule at JLab@22 GeV (meas.+low-*x*)



## Extraction of $\alpha_s(M_Z)$



nomas Jefferson National Accelerator F

# Extraction of $\alpha_s(M_Z)$



ing the Nature of Matte

## Extraction of $\alpha_s(M_Z)$



Jeff

Exploring the Nature of Matter