Tree-level matching relations for next-to-leading power

transverse momentum distributions

Alessio Carmelo Alvaro Based on *PLB* 845 (2023) 138163 In collaboration with B. Pasquini and S. Rodini Science at the Luminosity Frontier: Jefferson Lab at 22 GeV, Laboratori Nazionali di Frascati, 9-13 December 2024

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

with mass corrections

Istituto Nazionale di Fisica Nucleare

18 Structure Functions in SIDIS

18 Structure Functions in SIDIS \rightarrow Only 8 with LP TMDs

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Why higher twists?

Leading Quark TMDPDFs

()→ Nucleon Spin

Quark Spin

18 Structure Functions in SIDIS \rightarrow Only 8 with LP TMDs Can we describe the other structure functions?

- 18 Structure Functions in SIDIS \rightarrow Only 8 with LP TMDs
 - Can we describe the other structure functions?
 - Can we predict the magnitude of them?

- 18 Structure Functions in SIDIS \rightarrow Only 8 with LP TMDs
 - Can we describe the other structure functions?
 - Can we predict the magnitude of them?
- Do these structure functions provide new insights into proton structure?

'I'wist 3 in SIDIS

Genuine NLP corrections

Kinematic NLP corrections $\propto \frac{2M}{O} \circ f(x,b) \otimes D(z,b)$

 $\propto \frac{2M}{O} f(x_1, x_2, x_3, b) \otimes D(z, b)$

 $\propto \frac{\Delta NI}{Q} f(x,b) \otimes D(z_1, z_2, z_3, b)$ 2MS.Rodini, A. Vladimirov,2306.09495

Twist 3 in SIDS

Genuine NLP corrections

Kinematic NLP corrections $\propto \frac{2M}{O} \dot{f}(x,b) \otimes D(z,b)$

 $\propto \frac{2M}{O} f(x_1, x_2, x_3, b) \otimes D(z, b)$

2M $\propto \frac{-1}{Q} f(x,b) \otimes D(z_1,z_2,z_3,b)$ S.Rodini, A. Vladimirov,2306.09495

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Twist 3 TMDPDFs

S.Rodini, A. Vladimirov,2204.03856

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Twist 3 TMDPDFs

Quark-gluon correlations 32 Twist 3 TMDs Physical distributions: $\Phi^{\mu}_{\oplus} = \frac{1}{2} \left(\Phi^{\mu}_{21} + \Phi^{\mu}_{12} \right)$ $-\left(\Phi^{\mu}_{21} - \right)$ $\Phi^{\mu}_{\bigcirc} =$ Φ^{μ}_{12}

S.Rodini, A. Vladimirov,2204.03856

Matching Relations In the small *b* regime: $f_i(x_1, x_2, x_3, b) = \sum_{i} C_{ij}(x_1, x_2, x_3, b) \otimes f_j(x_1, x_2, x_3) + O(b^2)$

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

Matching Relations

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

In the small *b* regime: $f_i(x_1, x_2, x_3, b) = \sum C_{ij}(x_1, x_2, x_3, b) \otimes f_j(x_1, x_2, x_3) + O(b^2)$

Constraint on TMDs functional form

Matching Relations

- In the small *b* regime: $f_i(x_1, x_2, x_3, b) = \sum C_{ij}(x_1, x_2, x_3, b) \otimes f_j(x_1, x_2, x_3) + O(b^2)$
 - Constraint on TMDs functional form
 - Predictions for TMD observables in the small b region

- S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163
- Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Matching Relations

- In the small *b* regime: $f_i(x_1, x_2, x_3, b) = \sum C_{ij}(x_1, x_2, x_3, b) \otimes f_j(x_1, x_2, x_3) + O(b^2)$
 - Constraint on TMDs functional form
 - Predictions for TMD observables in the small b region

$f_j(x_1, x_2, x_3) \in \{T, \Delta T, E, H\}$

- S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163
- Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

1. Compactification of the correlator $\mp \infty \rightarrow L$

V.Moos, A. Vladimirov, 2008.01744

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

1. Compactification of the correlator $\mp \infty \rightarrow L$

2. Expansion of the operator around b = 0 and expansion of the fields around $z_i = L$

V.Moos, A. Vladimirov, 2008.01744

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

- 1. Compactification of the correlator $\mp \infty \rightarrow L$
- 2. Expansion of the operator around b = 0 and expansion of the fields around $z_i = L$
 - 3. Twist decomposition

- V.Moos, A. Vladimirov, 2008.01744
- S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163
- Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

- 1. Compactification of the correlator $\mp \infty \rightarrow L$
- 2. Expansion of the operator around b = 0 and expansion of the fields around $z_i = L$
 - 3. Twist decomposition
 - - V.Moos, A. Vladimirov, 2008.01744
 - S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163
 - Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

4. Forward matrix element, limit $L \rightarrow \mp \infty$ and Fourier transform to the space of partons fractions of momentum

Leading Term

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Resident R

 $h_{\oplus}(x_1, x_2, x_3, b) = E(x_1, x_2, x_3)$ $+\sum_{n=1}^{\infty} \frac{1}{n!(n-1)!} \left(\frac{x_3^2 M^2 b^2}{4}\right)^n C \left[u \left(\frac{\bar{u}}{u}\right)^{n-1} E(y_1, y_2, y_3)\right]$

Mass Series

$h_{\Theta T}^{D\perp}(x_1, x_2, x_3, b) = -x_3 \int_0^1 du H\left(\frac{x_1}{u}, \frac{x_2}{u}, \frac{x_3}{u}\right) + O(x_3^2 M^2 b^2)$

Wandzura-Wilczek like relation

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Resident R

7 twist 3 TMDPDFs match onto twist 3 PDF

 $\{f_{\oplus T}, g_{\Theta T}, h_{\oplus}, h_{\Theta L}\}, \{f_{\oplus L}^{\perp}, g_{\Theta L}^{\perp}, h_{\Theta T}^{D\perp}\}$ S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Resident R

$$b) = E(x_1, x_2, x_3)$$

$$- \int^{n} C \left[u \left(\frac{\bar{u}}{u} \right)^{n-1} E(y_1, y_2, y_3) \right]$$

$$duH \left(\frac{x_1}{u}, \frac{x_2}{u}, \frac{x_3}{u} \right) + O(x_3^2 M^2 b^2)$$

 $F_{LU}^{\sin\phi} \propto h_{\oplus} \otimes H_1^{\perp}$

S.Rodini, A. Vladimirov, 2306.09495

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Application to SIDIS

No kinematic corrections

Magnitude of Genuine NLP corrections

 $h_{\bigoplus}(-x,0,x,b) \approx \pi^{-1} h_1^{\perp}(x,b) \Rightarrow F_{UU,QS-like}^{\cos\phi} \gtrsim \frac{2M}{O} F_{UU,T}^{\cos 2\phi}$

S.Rodini, A. Vladimirov, 2306.09495

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Application to SIDIS

$F_{III}^{\cos\phi} \propto (h_{\oplus} \otimes H_1^{\perp}) \delta(x_2) + kin$

• $F_{III}^{\sin\phi}, F_{II}^{\cos\phi}, F_{IIT}^{\sin\phi_S}, F_{IT}^{\cos\phi_S}$: interplay between different TMDPDFs

S.Rodini, A. Vladimirov, 2306.09495

S.Rodini, A. C. Alvaro, B. Pasquini PLB 845 (2023) 138163

Alessio Carmelo Alvaro, University of Pavia and INFN Pavia, 10/12/2024

Application to SIDIS

• $F_{UT}^{\sin 2\phi - \phi_S} \propto h_{\Theta T}^{D\perp} \otimes H_1^{\perp} + kin$

• $F_{LT}^{\cos 2\phi - \phi_S} \sim NLO$

Summary

- Why higher twists: new insights in proton structure and phenomenology
 - Twist 3 TMDs: quark-gluon correlations
 - Technique: OPE + twist decomposition
 - Results: leading term + mass corrections' series
- Application to SIDIS: simplification in NLP structure functions