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Hard Exclusive processes

Introduction
Generalized Parton Distributions (GPDs)

3D Description: 
Spatial (2D) + longitudinal momentum (1D) 
distribution of partons inside the nucleon.

One of Flagship programs of JLab at 6 GeV 
and 12 GeV .

More than a dozen of 
dedicated  experiments (completed and 
planned), @ 6 GeV, @12 GeV and w/ e+ 
beam.

Depend on three variables x, 𝜉 and t

Factorization works if there is a hard scale and 
relatively small 4 momentum transfer to the 
hadron

In the forward limit (𝜉→0, t→0) 
they reduce to PDFs.

First moments of quark GPDs are related to the Dirac, Pauli, axial, and 
pseudoscalar form factors
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How to access GPDs experimentally

DVCS

TCS

DVCS/TCS amplitudes are proportional to

Same for (H̃, E, Ẽ)

The way to avoid integration over x outside the x=𝜉 phase space is DDVCS, 
which allows mapping GPDs along all three variables (x, 𝜉, and t) independently.

• GPDs enter observables as an integral over x, with an exception when the 
observable is proportional to the Im part of the scattering amplitude. 

• There one access GPDs at x=𝜉
• Certainly, an important gain of information, however, not enough to 

independently map out GPDs.

• First measurement reported in 2001: Phys.Rev.Lett. 87 (2001) 182002

Followed measurements:
• JLab (Halls A, B and C) + HERMES + COMPASS
• Beam and Target Spin asymmetries
• X-sec measurements
• Nuclear targets
• Different reactions: DVCS, DVMP, TCS

However, Extraction of GPDs from measurements is challenging.
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Kinematics of two photons are described by 𝜉 and 𝜉'.

x=𝜉x=-𝜉
Q2>Q’2Q2<Q’2

Quark propagators between 
two photons now reads as:

Observables (e.g. BSA) proportional to the Im part of the amplitude, allow direct measurement 
of GPDs at (x=2𝜉' - 𝜉, 𝜉, t) points.

Here one can get away from the x=𝜉 line by varying virtualities of incoming and outgoing photons

Double DVCS: accessing GPDs at x≠ξ point
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Cross-sections
The challenge of the DDVCS is it involves  an additional 𝛼 which makes the DDVCS cross-section 2-3 
orders of magnitude smaller than the DVCS cross-section.

With standard CLAS12 detector package it is unrealistic to get sufficient statistics in a reasonable data 
taking time

Luminosity upgrade is a must for a DDVCS measurement.

Using M. Guidal's code

12 GeV kinematics
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The proposed measurement

The reaction of interest is ep → e′𝝁-𝝁+p

• The timelike photon is identified through the detection of 𝝁-𝝁+ pair (to avoid the Interference between the beam 
and the decay electron.)

• Requires a muon detection
• Proposed Luminosity: 1037 cm-2s-1.
• We plan to detect at least e′𝝁-𝝁+, and the proton kinematics will be deduced from the missing momentum analysis, 

when the proton is outside of the acceptance.

• SoLid and High Lumi upgraded CLAS12 are ideal place to carry 
out the experiment.

• High Lumi (>1037cm-2s-1)
• Large acceptance

• DDVCS with 𝜇CLAS12: LOI12-16-004
• DDVCS with SoLID: LOI12-23-012

Both experiments will detect same final state.
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Detector configurations

𝜇CLAS12

SoLID

• Lumi > 1037cm-2s-1

• Electron polar angle 8°-28°

• Muon polar angle 8°-15°

• Full azimuthal coverage

• Modest modification of the CLAS12 detector
• Take out HTCC, CVT and CTOF
• New Electromagnetic calorimeter for electron detection
• New Tungsten absorbers for suppressing all electromagnetic 

background coming from the target
• Electron polar angle (7°-30°), full azimuthal coverage
• Muons starting 7° up to around 40°.

SoLId picture from Z. Zhao

The SoLID apparatus completed with muon detectors at forward angle, 
enables DDVCS measurements with both polarized electron and 

Positron beams at 11 and 22GeV 
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Geant4 simulations

Calorimeter

Tungsten Shied

• The detector model is in GEMC (Thanks to Mauri and Raffaella)
• Reconstruction of muons is done through full CLAS12 offline reconstruction software (coatjava)

• BH: ep→𝜇-𝜇+p
• Quasi-elastic dileptons: ep→𝜇-𝜇+pX
• ep→𝛒( 𝜇-𝜇+)p
• ep→𝛒( π-π+)p Thanks to Harut
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Reconstruction: 22 GeV simulations

𝜇- 𝜇+

e-

Q2 > 0.9 GeV2, Generator cut).

𝜇-

• As it is not surprising there is a big energy loss.
• Each muon momentum is corrected accordingly
• Generated muon angles used, as tracking detectors close to the vertex will 

provide precise angular measurements.
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Kinematic distributions

22 GeV covers larger 
kinematic region.

-t < 0.5 GeV2 for 10.6 GeV

-t < 1 GeV2 for 22 GeV
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Why do DDVCS at 22 GeV

• With 22 GeV The resonance free [2 – 3] GeV region is 
more accessible.

• 22 GeV provides larger coverage on Q2 as well.

• Allows to test the scaling and evolution of GPDs

• Study higher twist effects

SoLID kinematics
From Z. ZHao
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10.6 GeV phase space

200 days w/ 1037cm-2s-1

Beam polarization 80%
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22 GeV phase space

200 days w/ 1037cm-2s-1

Beam polarization 80%
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Summary

• DDVCS is an important process which allows to access GPDs away from the x=±𝜉 line
• Has never been measured because of its very small cross section.
• JLab with High Luminosity facilities (CLAS12 and SoLID) is an ideal place to carry out the experiment.
• Detectors will not need upgrade to go from 10 GeV to 22 GeV.
• 20+ GeV upgrade allows to reach higher Q2 . 

•  Test evolution and scaling of GPDs
•  Study higher twist effects

10.6 GeV

22 GeV
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22 GeV kinematics
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10.6 GeV

22 GeV

22 GeV

10.6 GeV
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Eb = 10.6 GeV Eb = 22 GeV

J/psi

With tracking detectors in front of the target, we should be able to significantly improve the mass resolution
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• The effect of the momentum correction is huge (as it is 
expected)

• Assuming no vertex detectors, angular corrections also improve 
the missing mass resolution, but not too much

• Installing vertex detectors will significantly improve the missing 
mass.

Missing mass
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Applying the missing mass cut

All simulations are normalized by their x-sec and 200 days of running at 1037cm-2s-1.
• 𝜌->π-π+ : No event pass the missing mass cut.
• 𝜌->𝜇-𝜇+ : They are well inside the missing mass cut, however no contributions above M > 1.2 GeV.
• Quasi-elastic: about 30% of quasi-elastic leak into the missing mass cut, making about 5% 

contamination. Those are mainly π0s, and can be accounted for in a similar way as in DVCS analysis.
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• An absorber with a thickness of 30 cm was used to bring DC occupancies to an acceptable level.

• Rates were studied for protons, pions, electrons and photons by placing a scoring plane between 4.8° 
and 35° at 40 cm from the target.

• The tot rate from all particles at 5° is less than 0.5 MHz/cm2. 
• Trigger rate:

• Requiring 5 hits FDC AND MIP signature in calorimeter have 75/95 KHz for positive/negative single 
tracks:

• Using a 50 ns coincidence time this translates into about  360 Hz

Particle Rates

• Serves as an additional shielding for EM background.
• 7◦ – 12◦, crystals are 13 mm x 13 mm to keep rates per crystal at an acceptable level
• Above 12◦, crystals 20mm x 20 mm will be used
• Readout: APD from the downstream face of crystals
• Similar crystals and readout were used during the DVCS calorimeter, and HPS electromagnetic calorimeter
• Expected rates at 7◦ is around 1.5 MHz

• Similar rates were observed in HPS experiment on close to the beam crystals.

HPS energy resolution

HPS time resolution

Electromagnetic calorimeter

Rates on MPGD trackers

• Highest rates at 7° is less than < 0.6 MHz/cm2
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