

Double Deeply Virtual Compton Scattering (DDVCS) at 22 GeV

Rafayel Paremuzyan

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV, Dec. 9-13, 2024, Frascati, Italy

Introduction

Generalized Parton Distributions (GPDs)

3D Description: Spatial (2D) + longitudinal momentum (1D) distribution of partons inside the nucleon.

One of Flagship programs of JLab at 6 GeV and 12 GeV .

More than a dozen of dedicated experiments (completed and planned), ω 6 GeV, ω 12 GeV and w/ e+ beam.

Factorization works if there is a hard scale and relatively small 4 momentum transfer to the hadron $\overline{1}$

$$
\frac{\iota}{Q^2 \text{ or } Q'^2} << 1
$$

Depend on three variables x , ξ and **t**

In the forward limit ($\xi \rightarrow 0$, t $\xrightarrow{ }0$) they reduce to PDFs.

 $H^{q}(x, 0, 0) = q(x) - \overline{q}(x)$ $\tilde{H}^{q}(x, 0, 0) = \Delta q(x) - \Delta \overline{q}(x)$

First moments of quark GPDs are related to the Dirac, Pauli, axial, and pseudoscalar form factors

$$
\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)
$$

$$
\int_{-1}^{1} dx \tilde{H}^{q}(x,\xi,t) = g_{A}^{q}(t)
$$

$$
\int_{-1}^{1} dx E^{q}(x, \xi, t) = F_{2}^{q}(t)
$$

$$
\int_{-1}^{1} dx \tilde{E}^{q}(x, \xi, t) = h_{A}^{q}(t)
$$

How to access GPDs experimentally

- First measurement reported **in 2001**: *Phys.Rev.Lett.* 87 (2001) 182002 Followed measurements:
- JLab (Halls A, B and C) + HERMES + COMPASS
- Beam and Target Spin asymmetries
- X-sec measurements
- Nuclear targets
- Different reactions: DVCS, DVMP, TCS

However, Extraction of GPDs from measurements is challenging.

DVCS/TCS amplitudes are proportional to

$$
\int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} + \dots \text{ Same for (\tilde{H}, \mathsf{E}, \tilde{\mathsf{E}})} \qquad PV(\int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi}) - i\pi H(\xi,\xi,t)
$$

- GPDs enter observables as an integral over **x**, with an exception when the observable is proportional to the Im part of the scattering amplitude.
- There one access GPDs at $x=\xi$
- Certainly, an important gain of information, however, not enough to independently map out GPDs.

The way to avoid integration over x outside the $x=\xi$ phase space is DDVCS, which allows mapping GPDs along all three variables (x, ξ) and t) independently.

Double **DVCS**: accessing GPDs at x≠ξ point

Observables (e.g. BSA) proportional to the Im part of the amplitude, allow direct measurement of GPDs at $(x=2\xi' - \xi, \xi, t)$ points.

Here one can get away from the $x=\xi$ line by varying virtualities of incoming and outgoing photons

Cross-sections

The challenge of the DDVCS is it involves an additional α which makes the DDVCS cross-section 2-3 orders of magnitude smaller than the DVCS cross-section.

With standard CLAS12 detector package it is unrealistic to get sufficient statistics in a reasonable data taking time

Luminosity upgrade is a must for a DDVCS measurement.

The proposed measurement

- SoLid and High Lumi upgraded CLAS12 are ideal place to carry out the experiment.
	- **High Lumi (>10³⁷cm-2s -1)**
	- **Large acceptance**
- DDVCS with μ CLAS12: LOI12-16-004
- DDVCS with SoLID: LOI12-23-012

Both experiments will detect same final state.

- The timelike photon is identified through the detection of $\mu^+\mu^+$ pair (to avoid the Interference between the beam and the decay electron.)
	- Requires a muon detection
- Proposed Luminosity: 10^{37} cm⁻²s⁻¹.
- We plan to detect at least e' μ ⁻ μ ⁺, and the proton kinematics will be deduced from the missing momentum analysis, when the proton is outside of the acceptance.

The reaction of interest is ep $\rightarrow e^{\prime}\mu^{\dagger}\mu^{\dagger}p$

Detector configurations

- Modest modification of the CLAS12 detector
- Take out HTCC, CVT and CTOF
- New Electromagnetic calorimeter for electron detection
- New Tungsten absorbers for suppressing all electromagnetic background coming from the target
- Electron polar angle (7°-30°), full azimuthal coverage
- Muons starting 7° up to around 40°.

The SoLID apparatus completed with muon detectors at forward angle, enables DDVCS measurements with both polarized electron and Positron beams at 11 and 22GeV

- Lumi > 10^{37} cm⁻²s⁻¹
- Electron polar angle 8 ° -28°
- Muon polar angle 8°-15°
- Full azimuthal coverage

SoLId picture from Z. Zhao

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV, Sity Tronden senerosin Eds at 22 GeV, and the sense of the
Dec. 9-13, 2024

Geant4 simulations

- The detector model is in GEMC (Thanks to Mauri and Raffaella)
- Reconstruction of muons is done through full CLAS12 offline reconstruction software (coatjava)

Reconstruction: 22 GeV simulations

Kinematic distributions

Why do DDVCS at 22 GeV

- With 22 GeV The resonance free $[2 3]$ GeV region is more accessible.
- 22 GeV provides larger coverage on Q2 as well.
- Allows to test the scaling and evolution of GPDs
- Study higher twist effects

10.6 GeV phase space

22 GeV phase space

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV, Dec. 9-13, 2024 ¹³

Summary

- DDVCS is an important process which allows to access GPDs away from the $x=\pm \xi$ line
- Has never been measured because of its very small cross section.
- JLab with High Luminosity facilities (CLAS12 and SoLID) is an ideal place to carry out the experiment.
- Detectors will not need upgrade to go from 10 GeV to 22 GeV.
- 20+ GeV upgrade allows to reach higher Q2 .
	- Test evolution and scaling of GPDs
	- Study higher twist effects

Backup

22 GeV kinematics

J/psi

With tracking detectors in front of the target, we should be able to significantly improve the mass resolution

Missing mass

- The effect of the momentum correction is huge (as it is expected)
- Assuming no vertex detectors, angular corrections also improve the missing mass resolution, but not too much
- Installing vertex detectors will significantly improve the missing mass.

Applying the missing mass cut

All simulations are normalized by their x-sec and 200 days of running at 10 37 cm $^{-2}$ s $^{-1}$.

- ρ ->π-π+ : No event pass the missing mass cut.
- ρ -> μ - μ + : They are well inside the missing mass cut, however no contributions above M > 1.2 GeV.
- Quasi-elastic: about 30% of quasi-elastic leak into the missing mass cut, making about 5% contamination. Those are mainly $\pi^0 s$, and can be accounted for in a similar way as in DVCS analysis.

Particle Rates

- An absorber with a thickness of 30 cm was used to bring DC occupancies to an acceptable level.
- Rates were studied for protons, pions, electrons and photons by placing a scoring plane between 4.8° and 35° at 40 cm from the target.
	- The tot rate from all particles at 5° is less than 0.5 MHz/cm².
- Trigger rate:
	- Requiring 5 hits FDC AND MIP signature in calorimeter have 75/95 KHz for positive/negative single tracks:
	- Using a 50 ns coincidence time this translates into about 360 Hz

Electromagnetic calorimeter

- Serves as an additional shielding for EM background.
- 7° 12°, crystals are 13 mm x 13 mm to keep rates per crystal at an acceptable level
- Above 12◦ , crystals 20mm x 20 mm will be used
- Readout: APD from the downstream face of crystals
- Similar crystals and readout were used during the DVCS calorimeter, and HPS electromagnetic calorimeter
- Expected rates at 7° is around 1.5 MHz
	- Similar rates were observed in HPS experiment on close to the beam crystals.

Rates on MPGD trackers

Highest rates at 7° is less than < 0.6 MHz/cm²