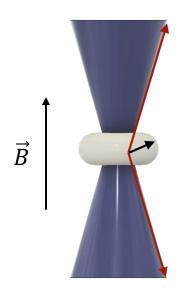
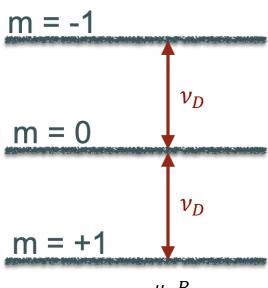
Studying the tensor-polarized deuteron system in the 22 GeV era




Nathaly Santiesteban

Science at the Luminosity Frontier Jefferson Lab 22 GeV 2024

Spin-1 polarization

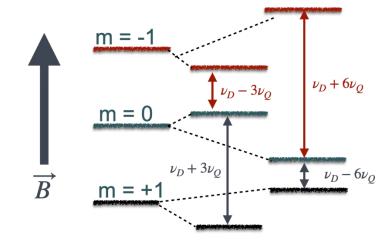
$$v_D = \frac{\mu_D B}{h}$$

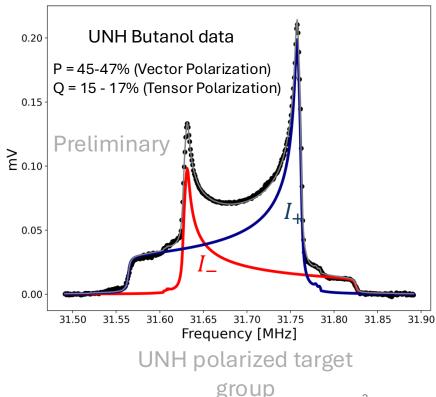
$$v_D = 6.54 \text{ MHz/T}$$

Spin-1 in a magnetic field System

- •3 sub-levels (+1, 0, 1) due to Zeeman interaction.
- •Two energy transitions $I_{+}(+1\longrightarrow 0)$ and $I_{-}(0\longrightarrow -1)$.

Spin-1 polarization


$$E_m = -h\nu_D m + h\nu_Q (\cos^2\theta - 1)(3m^2 - 2)$$


Electric quadrupole interaction

(shifts the energy levels)

Electric field gradient eq:

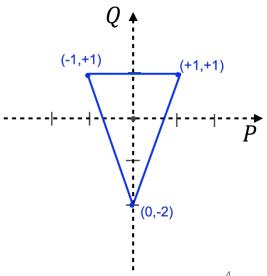
 θ : angle between eq and eQ

Enhancing vector polarization with DNP

- At thermal equilibrium (B = 5 T and T = 1 K), the vector polarization in Deuterium is $P \sim 0.1\%$
- Dynamic Nuclear Polarization (DNP) enhances the vector polarization to up to 50% in deuterated butanol and deuterated ammonia Paramagnetic centers in the material, either chemically doped or irradiated, induce spin transitions through the application of microwaves to the sample, which is already in a magnetic field at very low temperatures.

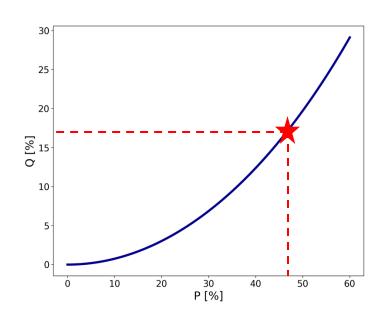
Vector Polarization:

$$P = N_{+} - N_{-}$$
$$-1 < P < +1$$

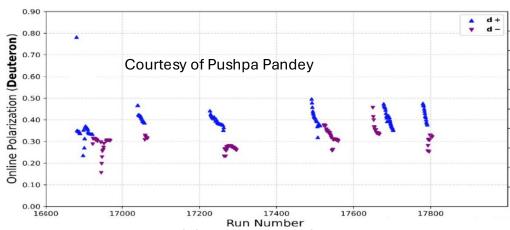

Tensor Polarization:

$$Q = N_{+} + N_{-} - 2N_{0}$$
$$-2 < Q < +1$$

n·

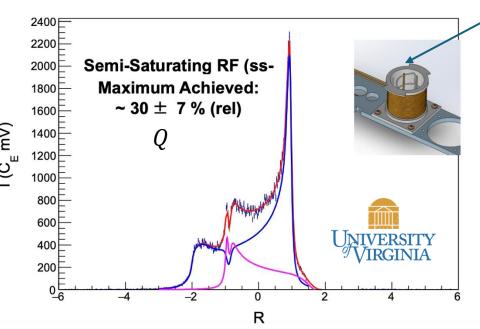

Normalization:

$$1 = N_+ + N_- + N_0$$



Can we perform an experiment with this technique?

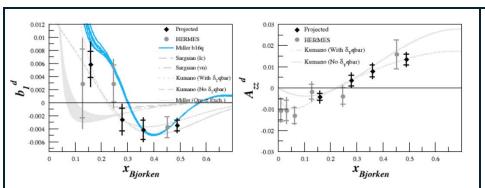
- Target material used in tensor polarized techniques: deuterated ammonia (ND₃)
- After DNP, Vector and tensor polarizations are related as: $Q=2-\sqrt{4-3P^2}$



Tensor polarization with DNP is at best 15 – 20% and decays with dose (under electron beam)

Need additional techniques to enhance the tensor polarization

Enhanced tensor polarization using ss-RF



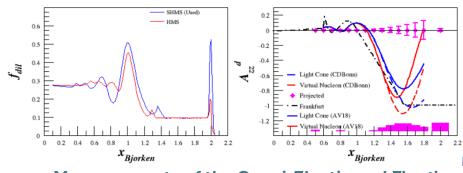
D. Keller Eur. Phys. J. A53 (2017)

Target cup

- Use optimized radiofrequency (RF) to manipulate the NMR line of deuteron.
- Technique has been successful with deuterated butanol.
- Work is ongoing to demonstrate its effectiveness in ND3, with the goal of running the approved experiments b_1 and A_{22} .

Jefferson Lab approved experiments: b_1 and A_{zz} .

The Deuteron Tensor Structure Function b1


Scientific Rate: A-

Hall C

Days awarded: 41

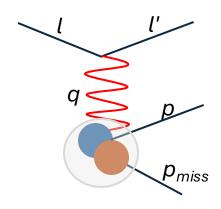
K. Slifer (contact), J.-P. Chen, D. Keller, E. Long,

O. Rondon, N. Santiesteban, P. Solvignon

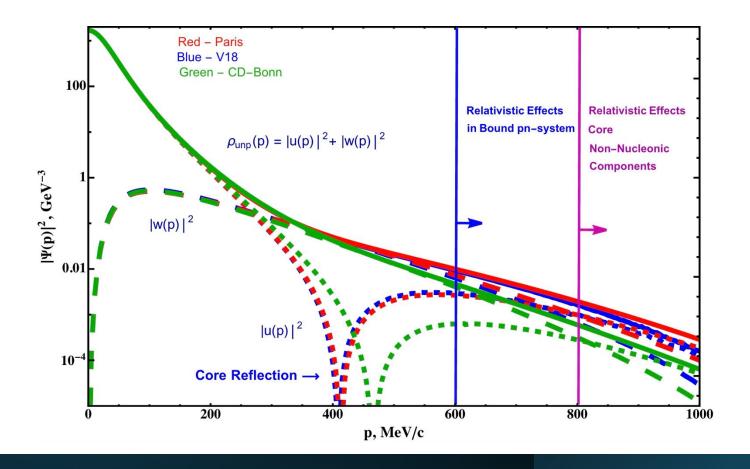
Measurements of the Quasi-Elastic and Elastic

Deuteron Tensor Asymmetries

Scientific Rate: A-


Hall C

Days awarded: 45


E. Long (contact), S. Santiesteban, K. Slifer, D. Day,

D. Keller, D. Higinbotham

Exclusive electro-disintegration of tensor polarized deuterium

W. Boeglin, I.P. Fernando, M. Jones E. Long, S. N. Santiesteban, M. Sargsian, H. Szumila-Vance, C. Yero

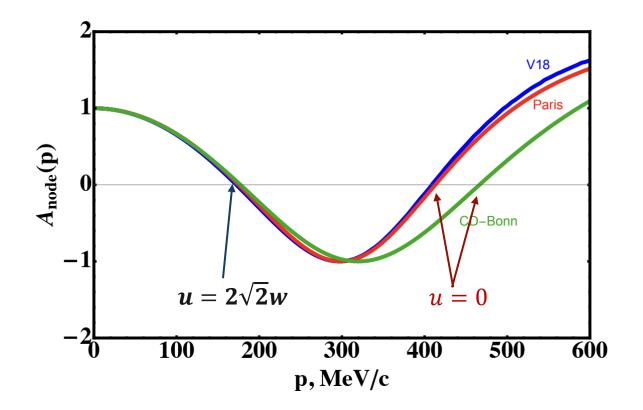
Momentum distributions for S (dotted) and D (dashed) partial waves
Total contribution to unpolarized deuteron momentum distribution (solid)

Courtesy of M. Sargsian

Probing the NN core

$$\rho_{unp}(p_m) = |u(p_m)|^2 + |w(p_m)|^2$$

 $u(p_m)$ |: S-partial wave of the deuteron $w(p_m)$ |: D-partial wave of the deuteron


$$\rho_{20}(p_m) = \frac{3\cos^2(\theta_N) - 1}{2} \left[2\sqrt{2}u(p_m)w(p_m) - w(p_m)^2 | \right]$$

 θ_N : direction of internal momenta with respect to the polarization axis of the deuteron

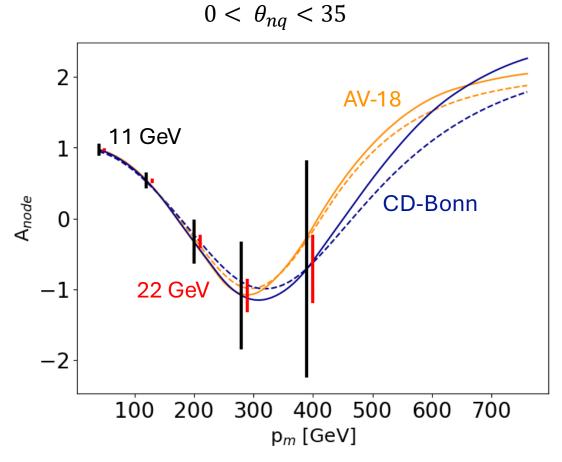
$$A_{node} = \frac{u(p_m)^2 + 2\sqrt{2}u(p_m)w(p_m)}{|u(p_m)|^2 + |w(p_m)|^2}$$

$$A_{node}(p) = 0 \quad \begin{cases} u(p) = -2\sqrt{2}w(p) & \longrightarrow & p \sim 180 MeV \\ u(p) = 0 & \longrightarrow & p \geq 400 MeV \end{cases}$$

M. Sargsian <u>2410.08384 (2024)</u>.

The node is a signature of nuclear repulsive core: In the PWIA approximation, if deuteron consisted of only the S-state, then in this case the node is like a hole in the momentum space through which the probe-electron will pass without interaction.

M. Sargsian <u>2410.08384 (2024)</u>.


SHMS (e (beam) SHMS max: 35° 15 deg 35° $\theta_B = 20^{\circ}$ θ_e HMS(p) θ_p HMS_max: 55 deg recoil neutron (n) incident (e-)beam Hall C

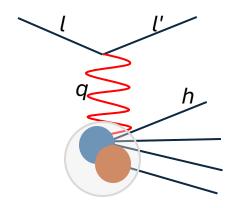
At 11 GeV:

Looking at forward kinematics to minimize FSI (0 < θ_{nq} < 35). In short, this implies θ_p > 50 deg

We currently are limited by the acceptance of the target magnet $(\pm 35 \text{ deg})$.

We can rotate the magnet maximum 20 deg: Proton side up to 50 deg.

11 GeV


$$E'_{p} = 1.65 \; GeV, \; \theta'_{p} = 53 \; deg \ E'_{e} = 9.5 \; GeV, \; \; \theta'_{e} = 8.46 \; deg$$

22 GeV

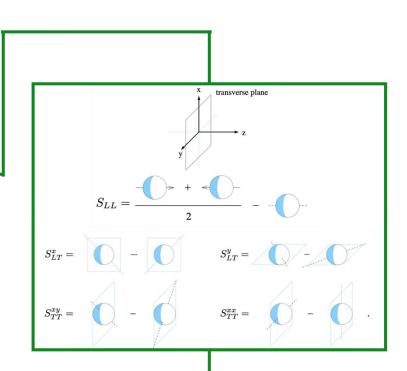
$$E'_{p} = 1.65 \text{ GeV}, \quad \theta'_{p} = 55 \text{ deg}$$

 $E'_{e} = 21.01 \text{ GeV}, \quad \theta'_{e} = 4.12 \text{ deg}$

Probably a good idea to optimize SoLID for electrons and potentially use other detector to measure the protons.

TMD Study with SIDIS on tensor polarized deuteron

A. Bacchetta, J.P. Chen, I. Fernando, D. Keller, E. Long, J. Poudel, D. Ruth (contact), S. N. Santiesteban, K. Slifer,


Leading twist distribution functions

Never Measured!

Quark Hadron	U (γ ⁺)		$L(\gamma^+\gamma_5)$		$T(i\sigma^{i+}\gamma_5/\sigma^{i+})$		
	T-even	T-odd	T-even	T-odd	T-even	T-odd	
U	f_1					$[h_1^{\perp}]$	
L			g_{1L}		$[h_{1L}^{\perp}]$		
Т		$f_{ m IT}^{\scriptscriptstyle \perp}$	g_{1T}		$[h_1],[h_{1\mathrm{T}}^\perp]$		
LL	$f_{ m 1LL}$					$[h_{1LL}^{\perp}]$	
LT	$f_{ m 1LT}$			$g_{1\mathrm{LT}}$		$[h_{1\mathrm{LT}}], [h_{1\mathrm{LT}}^{\perp}]$	
TT	f_{1TT}			g_{1TT}		$[h_{1\mathrm{TT}}],[h_{1\mathrm{TT}}^{\perp}]$	

After integrating over the transverse momentum:

Quark	U (γ ⁺)		$L(\gamma^+\gamma_5)$		$T(i\sigma^{i+}\gamma_5/\sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					
L			$g_{1L}(g_1)$			
T					$[h_1]$	
LL	$f_{1 \text{LL}}(b_1)$					
LT						*1
TT						

The tensor structure of the spin-1 deuteron will unlock new and fascinating possibilities for further understanding the parton structure in light nuclei.

b1 measured at HERMES. Phys. Rev. Lett. 95 (2005)

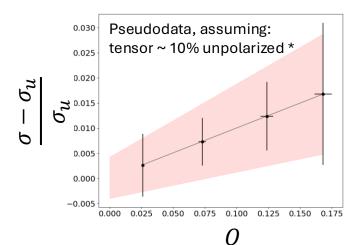
Longitudinally polarized target

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \frac{\alpha^2}{xyQ^2}\,\frac{y^2}{2\,(1-\varepsilon)}\,\left(1+\frac{\gamma^2}{2x}\right) \\ & \left\{F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} \right. \\ & \left. + \varepsilon\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} \right. \\ & \left. + S_{\parallel}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\sin(2\phi_h)\,F_{UL}^{\sin\,2\phi_h}\right] \right. \\ & \left. + S_{\parallel}\lambda_e\left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \right. \\ & \left. + T_{\parallel\parallel}\left[F_{U(LL),T} + \varepsilon F_{U(LL),L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{U(LL)}^{\cos\phi_h}\right] \right. \\ & \left. + \varepsilon\cos(2\phi_h)\,F_{U(LL)}^{\cos\,2\phi_h} + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{L(LL)}^{\sin\phi_h}\right] \right\}. \end{split}$$

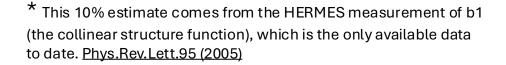
Courtesy of A. Bacchetta (private communication) 2023.

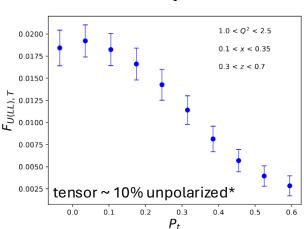
Tensor-polarized structure functions

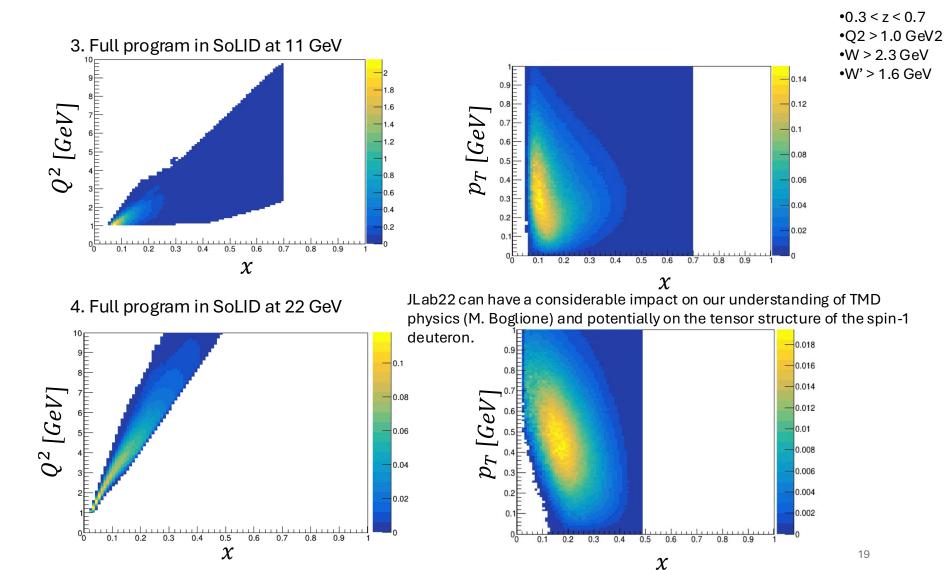
$$\begin{split} F_{U(LL),T} &= \mathcal{C} \big[\mathbf{f}_{1LL} D_1 \big], \\ F_{U(LL),L} &= 0, \\ F_{U(LL)}^{\cos\phi_h} &= \frac{2M}{Q} \, \mathcal{C} \bigg[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \bigg(x h_{LL} \, H_1^\perp + \frac{M_h}{M} \, \mathbf{f}_{1LL} \, \frac{\tilde{D}^\perp}{z} \bigg) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \bigg(x f_{LL}^\perp D_1 + \frac{M_h}{M} \, \mathbf{h}_{1LL}^\perp \, \frac{\tilde{H}}{z} \bigg) \bigg], \\ F_{U(LL)}^{\cos2\phi_h} &= \mathcal{C} \bigg[-\frac{2 \, \big(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \big) \, \big(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \big) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{M M_h} \, h_{1LL}^\perp H_1^\perp \bigg], \\ F_{L(LL)}^{\sin\phi_h} &= \frac{2M}{Q} \, \mathcal{C} \bigg[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \bigg(x e_{LL} \, H_1^\perp + \frac{M_h}{M} \, \mathbf{f}_{1LL} \, \frac{\tilde{G}^\perp}{z} \bigg) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \bigg(x g_{LL}^\perp D_1 + \frac{M_h}{M} \, \mathbf{h}_{1LL}^\perp \, \frac{\tilde{E}}{z} \bigg) \bigg]. \end{split}$$



Spin-1 leading twist


Courtesy of A. Bacchetta (private communication) 2023.


Our approach to study this structure functions


1. "Spin 1 Transverse Momentum Dependent Tensor Structure Functions in CLAS12" CLAS12 Approved Analysis (CAAFall 2024) Data: Polarized Deuterium (ND_3 via DNP). $Q_{max}{\sim}20\%$ Goal: understand the size of the tensor contribution to the SIDIS processes ($eD \rightarrow e'\pi^{\pm}X$)

2. "Spin-1 TMDs and Structure Functions of the Deuteron"
 Letter of Intent (LOI12-24-002 PAC 52, 2024)
 Goal: Dedicated Measurement in Hall C (eD → e'π[±]X)

Remarks

- The tensor component of spin-1 objects, such as the deuteron, holds the key to new and exciting insights into the parton structure of nuclear matter.
- QE measurements will benefit from the 22-GeV upgrade, provided that the same Q² is maintained.
- JLab's 11-GeV and 22-GeV configurations will complement each other to provide a more complete description of TMDs, as discussed over the course of this week.
- SoLID appears to be an excellent place to conduct such measurements. Very likely, this set of experiments and possible additional measurements will benefit from a run group program.