

Continuing the search for 3N SRCS (maybe) Science at the Luminosity Frontier: Jefferson Lab at 22 GeV

Nadia Fomin

This work was supported by U.S. Department of Energy under award number: DE-SC0013615



## **Status of 3N SRC searches**

#### No observation of a 3N SRC plateau

- 2N Plateaus observed in many measurements – well understood and well studied
- Several previous measurements provided inconclusive results



Z. Ye et al, PRC 97 (2018) 6



# **Background: 2N SRCs studies via inclusive scattering**







# Q<sup>2</sup> threshold for 2N SRC Observation





## More nucleons in a correlation



 $1.4 < x < 2 \Longrightarrow 2$  nucleon correlation  $2.4 < x < 3 \Longrightarrow 3$  nucleon correlation

$$\sigma(x, Q^2) = \sum_{j=1}^A A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\underline{\sigma_A} \qquad \qquad \frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

Go to x>2 to see a second, 3N SRC plateau in  $\frac{\sigma_A}{\sigma_{3He}}$ 



#### **Inclusive 3N SRC data so far**



# **Onset of 3N Dominance**





# **Onset of 3N Dominance**



#### Hall C XEM data from 6 GeV





## E12-06-105 (XEM2): 3N SRC Data Under Analysis





# E12-06-105: 3N SRC Data Under Analysis



- Data in  $1.6 < \alpha < 1.8$  region are not at necessary precision
- Possible Q<sup>2</sup> dependence in the ratio observed at x>2.2

Analysis by Jordan O'Kronley



#### Why don't you just go to higher Q<sup>2</sup>?





#### Why don't you just go to higher Q<sup>2</sup>?





#### E12-06-105: 3N SRC Data Under Analysis





• Statistics focused on 2.5 < x < 3.0 kinematic range The high statistics goal is driven by the prediction from Misak Sargsian of  $a_3 \sim (a_2)^2$ 

- For 4He/3He ratio,  $a_3 \sim 2.9$
- Projections don't show fluctuations in the data



• Statistics focused on  $2.5^{*} < x < 3.0$  kinematic range The high statistics goal is driven by the prediction from Misak Sargsian of  $a_{3} \sim (a_{2})^{2}$ 

- For 4He/3He ratio,  $a_3 \sim 2.9$
- Projections don't show fluctuations in the data



- Statistics focused on 2.5 < x < 3.0 kinematic range The high statistics goal is driven by the prediction from Misak Sargsian of  $a_3 \sim (a_2)$
- Projections don't show fluctuations in the data





• No clear advantage to 22 GeV for Quasielastic Scattering Experiments

21

- Vital to capitalize on the 11 GeV era for SRC studies
- Next few years are the last chance to search for 3N SRC
  - Need a dedicated experiment
    - CAN reach necessary kinematics!
  - Need additional support from theory
    - Misak is our only champion



N. Fomin et al, PRL 105, 212502 (2010)



### **Exponentially Falling Cross Section**



- Rates in the 2.5<x<3.0 region known from XEM2 for 10 degrees
- Relative scaling based on <sup>11</sup>B data for higher angles



# BACKUPS



#### 20<sup>th</sup> Century Data

- Moderate Q<sup>2</sup> data from SLAC
- Originally analyzed in the *y*-scaling picture

$$\sigma(x, Q^2) = \sum_{j=1}^{A} A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

TENNESSEE KNOXVILLE



**NOTE:** 
$$a_2 = \frac{\sigma_A}{\sigma_D}$$
 ! = **RELATIVE #OF SRCS**  
 $n_D^{OVV}(k)$  is the convolution of the CM motion of correlated pairs in  
Following prescription from C. Ciofi  
and S. Simula, Phys. Rev. C 53 (1996)  
 $\frac{1}{3}$  He 1.93±0.10 1.8±0.3 – 10

 $\underline{a_2} = \underline{\sigma_A} / \underline{\sigma_D}$  → relative measure of high *momentum nucleons* 

convolution of n<sub>D</sub>(k) with elated pairs in iron

from C. Ciofi degli Atti v. C 53 (1996)

|                 |                 |                 |                 | $\frown$          |                     |
|-----------------|-----------------|-----------------|-----------------|-------------------|---------------------|
|                 | E02-019         | SLAC            | CLAS            | $R_{2N}$ -ALI     | a <sub>2</sub> -ALL |
| <sup>3</sup> He | $1.93{\pm}0.10$ | $1.8{\pm}0.3$   | —               | $1.92 \pm 0.09$   | $2.13 \pm 0.04$     |
| $^{4}$ He       | $3.02{\pm}0.17$ | $2.8 {\pm} 0.4$ | $2.80 \pm 0.28$ | $2.94{\pm}0.14$   | $3.57 {\pm} 0.09$   |
| Be              | $3.37{\pm}0.17$ | _               | _               | $3.37 {\pm} 0.17$ | $3.91 {\pm} 0.12$   |
| $\mathbf{C}$    | $4.00{\pm}0.24$ | $4.2 {\pm} 0.5$ | $3.50 \pm 0.35$ | $3.89 {\pm} 0.18$ | $4.65 {\pm} 0.14$   |
| Al              | —               | $4.4{\pm}0.6$   | —               | $4.40 {\pm} 0.60$ | $5.30 {\pm} 0.60$   |
| Fe              | —               | $4.3{\pm}0.8$   | $3.90 \pm 0.37$ | $3.97 {\pm} 0.34$ | $4.75 {\pm} 0.29$   |
| Cu              | $4.33{\pm}0.28$ | —               | —               | $4.33 {\pm} 0.28$ | $5.21 {\pm} 0.20$   |
| Au              | $4.26{\pm}0.29$ | $4.0{\pm}0.6$   | _               | $4.21{\pm}0.26$   | $5.13{\pm}0.21$     |





# Test scaling in x and Q<sup>2</sup>



Phys. Rev. C 48, 2451(1993)



#### Have we actually seen 3N SRC in ratios?





omment on "Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei"

Douglas W. Higinbotham1 and Or Hen2

<sup>1</sup>Jefferson Lab, Newport News, VA 23606, USA <sup>2</sup>Tel Aviv University, Tel Aviv, Israel

