

Continuing the search for 3N SRCS (maybe)

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV

Nadia Fomin

#### Status of 3N SRC searches

#### No observation of a 3N SRC plateau

- 2N Plateaus observed in many measurements – well understood and well studied
- Several previous measurements provided inconclusive results



Z. Ye et al, PRC 97 (2018) 6

Background: 2N SRCs studies via inclusive scattering



# Q<sup>2</sup> threshold for 2N SRC Observation



Q<sup>2</sup><1.4  $R_{\rm He3}^{\rm C12}$ 0.5 3.5 Q<sup>2</sup>>1.4 2.5 He3 W 0.5 1.6 1.4 1.8  $X_B$ Egiyan et al (2003)

#### More nucleons in a correlation



$$1.4 < x < 2 \Rightarrow 2$$
 nucleon correlation

$$2.4 < x < 3 \Rightarrow$$
 3 nucleon correlation

$$\sigma(x, Q^2) = \sum_{j=1}^A A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$

Go to x>2 to see a second, 3N SRC plateau in 
$$\frac{\sigma_A}{\sigma_{2Ha}}$$
  $\frac{A}{3} a_3(A)\sigma_3(x,Q^2) + ....$ 

#### Inclusive 3N SRC data so far

| Experiment | Q <sup>2</sup> range (GeV <sup>2</sup> ) | Note               |
|------------|------------------------------------------|--------------------|
| E02019     | ~2.7                                     | XEM (6 GeV)        |
| E08014     | 1.3-1.9                                  | Hall A 6 GeV       |
| CLAS       | 1.6 (ave)                                | Resolution Limited |







#### **Onset of 3N Dominance**

Light cone momentum fraction in a 3N system



$$\alpha_{3N} = 3 - \frac{q_- + 3m_N}{2m_N} \left[ 1 + \frac{m_S^2 - m_N^2}{W_{3N}^2} + \sqrt{\left(1 - \frac{(m_S^2 + m_N^2)^2}{W_{3N}^2}\right) \left(1 - \frac{(m_S^2 - m_N^2)^2}{W_{3N}^2}\right)} \right]$$





#### **Onset of 3N Dominance**

Light cone momentum fraction in a 3N system



$$\alpha_{3N} = 3 - \frac{q_- + 3m_N}{2m_N} \left[ 1 + \frac{m_S^2 - m_N^2}{W_{3N}^2} + \sqrt{\left(1 - \frac{(m_S^2 + m_N^2)^2}{W_{3N}^2}\right) \left(1 - \frac{(m_S^2 - m_N^2)^2}{W_{3N}^2}\right)} \right]$$





#### Hall C XEM data from 6 GeV





# E12-06-105 (XEM2): 3N SRC Data Under Analysis



| $\theta_{ m SHMS}$ | Q <sup>2</sup> at x=2.5<br>(GeV <sup>2</sup> ) |
|--------------------|------------------------------------------------|
| 8.5                | 2.3                                            |
| 10                 | 3.2                                            |
| 11, 12*            | 3.8, 4.4 (test kinematics)                     |

# E12-06-105: 3N SRC Data Under Analysis



- Data in  $1.6 < \alpha < 1.8$  region are not at necessary precision
- Possible Q<sup>2</sup> dependence in the ratio observed at x>2.2

# Why don't you just go to higher Q<sup>2</sup>?



6 GeV XEM 12 GeV XEM2 (Under Analysis) Hall A at 6 GeV



# Why don't you just go to higher Q<sup>2</sup>?





#### E12-06-105: 3N SRC Data Under Analysis





Proposed Kinematics (10,11,12) XEM2 (Under analysis: 8.5, 10) Hall A at 6 GeV



### How much data do you really need?







- Statistics focused on  $2.5^{\circ} < x < 3.0$  kinematic range

  The high statistics goal is driven by the prediction from Misak Sargsian of  $a_3 \sim (a_2)^2$ 
  - For 4He/3He ratio,  $a_3 \sim 2.9$
  - Projections don't show fluctuations in the data

 $\frac{\sigma_{4He}/4}{\sigma_{3He}/3}$ How much data do you really need?  $\sigma_{\text{He4}} \, \text{/} \, \, \sigma_{\text{He3}} \, \text{Ratio:}$ E02019 Data  $(18^{0}, Q^{2}=2.7 \text{ GeV/c}^{2})$ CLAS Data 3.5  $25^{\circ}$ : 1.514<Q<sup>2</sup><1.898 (GeV/c<sup>2</sup>)  $23^{\circ}$ : 1.469< $Q^{2}$ <1.636 (GeV/ $c^{2}$ )  $21^{\circ}$ : 1.257< $Q^{2}$ <1.386 (GeV/ $c^{2}$ ) 2.5 OHe3 1.5 2.5 1.5 2.0 3.0 7-12% 0.5 1.5 1.5 0.5 2.5 0.5 2.5

- Statistics focused on  $2.5^{\circ} < x < 3.0$  kinematic range

  The high statistics goal is driven by the prediction from Misak Sargsian of  $a_3 \sim (a_2)^2$ 
  - For 4He/3He ratio,  $a_3 \sim 2.9$
  - Projections don't show fluctuations in the data

### How much data do you really need?





- Statistics focused on 2.5 < x < 3.0 kinematic range The high statistics goal is driven by the prediction from Misak Sargsian of  $a_3 \sim (a_2)$
- Projections don't show fluctuations in the data

# **Summary**

• No clear advantage to 22 GeV for Quasielastic Scattering Experiments

• Vital to capitalize on the 11 GeV era for SRC studies

Next few years are the last chance to search for 3N SRC

Need a dedicated experiment

- CAN reach necessary kinematics!
- Need additional support from theory
  - Misak is our only champion



#### Other fun things at x>1 at high $Q^2$

See J. Arrington's talk later







**Exponentially Falling Cross Section** 



- Rates in the 2.5<x<3.0 region known from XEM2 for 10 degrees
- Relative scaling based on <sup>11</sup>B data for higher angles

# **BACKUPS**

#### FSDS, Phys.Rev.C48: 2451-2461,1993 4He/2H $2/\Delta \ \sigma^{B_0}(\mathbf{x}, \mathbf{Q}^8)/\sigma^D(\mathbf{x}, \mathbf{Q}^8)$ 1.25 1.50 1.75 Fe/2H $2/\Delta \sigma^{Pe}(\mathbf{x}, \mathbf{Q}^2)/\sigma^{D}(\mathbf{x}, \mathbf{Q}^2)$ 0.75 1.75 1.00 1.25 1.50 2.00

#### **20<sup>th</sup> Century Data**

- Moderate Q<sup>2</sup> data from SLAC
- Originally analyzed in the *y*-scaling picture

$$\sigma(x, Q^{2}) = \sum_{j=1}^{A} A \frac{1}{j} a_{j}(A) \sigma_{j}(x, Q^{2})$$

$$= \frac{A}{2} a_{2}(A) \sigma_{2}(x, Q^{2}) + \frac{A}{3} a_{3}(A) \sigma_{3}(x, Q^{2}) + \dots$$

# NOTE: $a_2 = \frac{\sigma_A}{\sigma_B}$ ! =RELATIVE #OF SRCS



 $\underline{a_2} = \underline{\sigma_A} / \underline{\sigma_D}$  → relative measure of high momentum nucleons

 $R_{2n} \rightarrow$  relative measure of correlated pairs

 $n_D^{CONV}(k)$  is the convolution of  $n_D(k)$  with the CM motion of correlated pairs in iron

Following prescription from C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53 (1996)

|                 | E02-019         | SLAC          | CLAS          | $R_{2N}$ -ALI     |               |
|-----------------|-----------------|---------------|---------------|-------------------|---------------|
| <sup>3</sup> He | $1.93\pm0.10$   | $1.8\pm0.3$   | _             | $1.92 \pm 0.09$   | $2.13\pm0.04$ |
| <sup>4</sup> He | $3.02\pm0.17$   | $2.8\pm0.4$   | $2.80\pm0.28$ | $2.94{\pm}0.14$   | 3.57±0.09     |
| Ве              | $3.37\pm0.17$   | _             | _             | $3.37 {\pm} 0.17$ | $3.91\pm0.12$ |
| C               | $4.00 \pm 0.24$ | $4.2 \pm 0.5$ | $3.50\pm0.35$ | $3.89 {\pm} 0.18$ | $4.65\pm0.14$ |
| Al              | _               | $4.4\pm0.6$   | _             | $4.40{\pm}0.60$   | $5.30\pm0.60$ |
| Fe              | _               | $4.3\pm0.8$   | $3.90\pm0.37$ | $3.97 {\pm} 0.34$ | $4.75\pm0.29$ |
| Cu              | $4.33 \pm 0.28$ | _             | _             | $4.33{\pm}0.28$   | $5.21\pm0.20$ |
| Au              | $4.26 \pm 0.29$ | $4.0\pm0.6$   | _             | $4.21{\pm}0.26$   | $5.13\pm0.21$ |





# 4 2.5 3.3 3.3 4.1 5.2 6.4 7.4 2.5 1.5 1.6 α 3 THe 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 α



# Test scaling in x and Q<sup>2</sup>

$$\alpha = 2 - \frac{q^{-} + 2M}{2M} \left( 1 + \frac{\sqrt{W^{2} - 4M^{2}}}{W} \right)$$

Phys. Rev. C 48, 2451(1993)



# Have we actually seen 3N SRC in ratios?





omment on "Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei"

Douglas W. Higinbotham<sup>1</sup> and Or Hen<sup>2</sup>

<sup>1</sup> Jefferson Lab, Newport News, VA 23606, USA

<sup>2</sup> Tel Aviv University, Tel Aviv, Israel