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In DIS off a nuclear target with A nucleons:

q
0.2 ≤ x ≤ 0.8 “EMC (binding) region”: 
mainly valence quarks involved 

The EMC effect
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In DIS off a nuclear target with A nucleons:

q

Naive parton model interpretation:


“Valence quarks, in the bound nucleon, are in 
average slower that in the free nucleon”

Is the bound proton bigger than the free one??

The EMC effect

0.2 ≤ x ≤ 0.8 “EMC (binding) region”: 
mainly valence quarks involved 
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In DIS off a nuclear target with A nucleons:

q

main features: universal behavior independent on ; 
weakly dependent on A; Scales with the density ρ → 
global property? 

Or due to SRC  local property?

Q2

→

The EMC effect

0.2 ≤ x ≤ 0.8 “EMC (binding) region”: 
mainly valence quarks involved 
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In DIS off a nuclear target with A nucleons:

q

Explanation (exotic) advocated: confinement 
radius bigger for bound nucleons, quarks in bags 
with 6, 9,..., 3A 

quark, pion cloud effects... Alone or mixed with 
conventional ones...

The EMC effect

0.2 ≤ x ≤ 0.8 “EMC (binding) region”: 
mainly valence quarks involved 
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In DIS off a nuclear target with A nucleons:

q

Small effect! Several models can explain it
(Everyone’s Model is Cool)

The EMC effect

0.2 ≤ x ≤ 0.8 “EMC (binding) region”: 
mainly valence quarks involved 
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The EMC effect
Conventional calculations:

Qualitative agreement No fulfillment of both particle 
and momentum sum rules



Matteo Rinaldi JLab at 22 GeV (LNF-INFN 2024) 9

The EMC effect
Conventional (NR) calculations:

Qualitative agreement No fulfillment of both particle 
and momentum sum rules

In general, the lack of the Poincarè covariance and macroscopic locality* generates biases for the 
study of genuine QCD effects (nucleon swelling, exotic quark configurations …)
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The EMC effect
Conventional (NR) calculations:

Qualitative agreement No fulfillment of both particle 
and momentum sum rules

In general, the lack of the Poincarè covariance and macroscopic locality* generates biases for the 
study of genuine QCD effects (nucleon swelling, exotic quark configurations …)

Macroscopic locality (= cluster separability (relevant in nuclear physics)): i.e. observables associated to different  
space-time regions must commute in the limit of large space like separation (i.e. causally disconnected).  

In this way, when a system is separated into disjoint subsystems by a sufficiently large space like separation, then the 
subsystems behave as independent systems

B.D.Keister and W.N.Polyzou, Adv.Nucl.Phys. 20 (1991), 225-479
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The EMC effect

Only nucleonic d.o.f.

Poincaré covariant

Conventional nuclear Physics 
Standard Model of Few-Nucleon Systems 

achieved high-sophistication! 

Macroscopic locality

Sum rules fulfilled

Our approach (Light-Front + Bakamjian-Thomas)

B.D.Keister and W.N.Polyzou, Adv.Nucl.Phys. 20 (1991), 225-479 
P. A. M. Dirac, Rev. Mod. Phys. 21 (1949) 392–399 

B. Bakamjian, L. H. Thomas, Phys. Rev. 92 (1953) 1300–1310
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The EMC effect

Only nucleonic d.o.f.

Poincaré covariant

We provide a reliable baseline for the calculation of the nuclear SFs where only the well known nuclear 
part is considered 

This relativistic treatment is needed for the kinematics of the JLab12, JLab22 and EIC 

Conventional nuclear Physics 
Standard Model of Few-Nucleon Systems 

achieved high-sophistication! 

Macroscopic locality

Sum rules fulfilled

Our approach (Light-Front + Bakamjian-Thomas)
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LF approach in pills
Poincaré covariance  Find 10 generators: 
  displacements and Lorentz transformation, that fulfill: 
   

                                    

→
Pμ → 4D Mνμ →

[Pμ, Pν] = 0; [Mμν, Pρ] = − i(gμρPν − gνρPμ)
[Mμν, Mρσ] = − i(gμρMνσ + gνσMμρ − gμσMνρ − gνσMμσ)

Such a goal can be achieved in 
different equivalent ways 

depending on the initial conditions LF
𝗑+ = 𝗑𝟢 + 𝗑𝟥 = 𝟢

IF 𝗍 = 𝗑𝟢 = 𝟢

• 7 Kinematical generators (max n°):  i) 3 LF boosts (in instant form they are dynamical!) ;                                                        ii) 
 ;  iii) Rotation around the z-axis 

• The LF boosts have a subgroup structure: trivial separation of intrinsic and global motion, as in the NR case 
• meaningful Fock expansion, once massless constituents are absent 
• The infinite-monentum frame (IMF) description of DIS is easily included

P̃ = (P+ = P0 + P3, P⊥)

P+ ≥ 0 →
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LF + Bakamjian-Thomas construction
BT properly constructed the 10 Poincaré operators in presence of interactions following this scheme:

i) Only the mass operator  contains the interaction 

ii)  It generates the dependence of the 3 dynamical generators (  and LF transverse rotations) 

iii)  The eigenvalue equation is formally equivalent to the Schrödinger equation

M

P−

M2 |ψ > = s |ψ >

For a nucleus A:   MBT[1,2,3,…, A] = M0[1,2,3,…, A]+V(k2; k ⋅ ki; kj ⋅ ki)

From this construction:

1) The commutation rules impose to  invariance for translations and rotations as  
    well as independence on the total momentum, as it occurs for 

V
VNR

2) One can assume  MBT[1,2,…, A] ∼ MNR
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i) Only the mass operator  contains the interaction 

ii)  It generates the dependence of the 3 dynamical generators (  and LF transverse rotations) 

iii)  The eigenvalue equation is formally equivalent to the Schrödinger equation

M

P−

M2 |ψ > = s |ψ >
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LF + Bakamjian-Thomas construction
BT properly constructed the 10 Poincaré operators in presence of interactions following this scheme:

A

∑
i=1

ki = 0

For a nucleus A:   MBT[1,2,3,…, A] = M0[1,2,3,…, A]+V(k2; k ⋅ ki; kj ⋅ ki)
Free mass

M0[1,2,3,…, A] =
A

∑
i

m2 + k2
i

2 & 3 body forces 
operator

From this construction:

1) The commutation rules impose to  invariance for translations and rotations as  
    well as independence on the total momentum, as it occurs for 

V
VNR

2) One can assume  MBT[1,2,…, A] ∼ MNR

Therefore what has been learned till 
now about the nuclear interaction, 
within a non-relativistic framework, 

can be re-used in a Poincaré 
covariant framework.
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Our approach: Reference frames

28

In order to implement macro-locality, it is crucial to distinguish between different frames:

While pLAB
⊥ = k1⊥ = κ⊥

 is the mass of the 
fully interacting spectator system

Ms = (A − 1)m + ϵ

• The Lab frame, where  
• The intrinsic LF frame of the whole system, , where 
     with  

     and   

• The intrinsic LF frame of the cluster  where  
     with 

     and

P̃ = (MBT, 0⊥)
[1,2,…, A]

P̃ = (M0[1,2,…, A], 0⊥)

k+
i = ξiM0[1,2,…, A] M0[1,2,…, A] =

A

∑
i=1

m2 + k2
i

[1; 2,3,…, (A − 1)]
P̃ = (ℳ0[1; 2,3,…, A − 1]), 0⊥)

k+ = ξℳ0[1; 2,3,…, A − 1] ℳ0[1; 2,3,…, A − 1] = m2 + κ2 + M2
s + κ2
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Our approach: LF spectral function I

32

Since we use an impulse approximation assumption, we rely on the spin-dependent LF spectral function 
Pτ

σ′ σ(κ̃, ϵ, S, M)
 
PN

σ′ σ(κ̃, ϵ, S, M) = ∑
JJz

∑
TTz

ρ(ϵ)LF < tT; α, ϵ; JJz; τσ′ , κ̃ |ΨJM; S, TATAz > < ΨJM; S, TATAz | LFtT; α, ϵ; JJz; τσ, κ̃ >LF

 is the tensor product of the plane wave of the struck nucleon and the state of the fully 
interacting spectator system  in the intrinsic reference frame of the cluster  when the 
spectator system has energy . It fulfills the macrolocality*

| tT; α, ϵ; JJz; τσ′ , κ̃ >LF
[2,…, A − 1] [1; 2,3,…, A − 1]
ϵ

 is the eigenstate of  in the intrinsic frame of the system |ΨJM; S, TATAz >LF MBT[1,…, A] ∼ MNR [1,2,…, A]

The LF spectral function contains the determinant of the Jacobian of the transformation between the 
intrinsic frames and , connected each other by a LF boost[1; 2,3,…, A − 1] [1,2,…, A]
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PN

σ′ σ(κ̃, ϵ, S, M) = ∑
JJz

∑
TTz

ρ(ϵ)LF < tT; α, ϵ; JJz; τσ′ , κ̃ |ΨJM; S, TATAz > < ΨJM; S, TATAz | LFtT; α, ϵ; JJz; τσ, κ̃ >LF

Our approach: LF spectral function II

2) Then we can approximate the IF overlap into a NR overlap by using the NR wave function for the  nucleus, 
thanks to the BT construction: 

< tT; α, ϵ; JJz; τσ′ c, κ |ΨJM; S, TATAz >IF ∼ < tT; α, ϵ; JJz; τσ′ c, κ |ΨJM; S, TATAz >NR

Poincarè covariance preserved but using the successful NR phenomenology

1) We can express the LF overlap in terms of the IF overlap using Melosh rotations:

< tT; α, ϵ; JJz; τσ′ , κ̃ |ΨJM; S, TATAz >LF → < tT; α, ϵ; JJz; τσ′ c, κ |ΨJM; S, TATAz >IF

How do we deal with LF states?
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PN
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Poincarè covariance preserved but using the successful NR phenomenology
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How do we deal with LF states?

We used wave functions of  calculated 
through 3 different potentials: Av18+UIX* and 2 versions of 
the Norfolk  interactions NVIa+3N** and NVIb+3N**

2H,3 H,3 He,4 He

χEFT

*R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Phys. Rev. C 51 (1995) 38–51;   

 R. B. Wiringa et al., Phys. Rev. Lett. 74 (1995) 4396–4399

**M.Viviani et al., Phys. Rev. C 107 (1) (2023) 014314; M. Piarulli et al.,Phys. 
Rev. Lett. 120 (5) (2018) 052503; M. Piarulli, S. Pastore, R. B. Wiringa, S. 
Brusilow, R. Lim,Phys. Rev. C 107 (1) (2023) 014314
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Nuclear SFs and EMC ratio
To calculate the EMC ratio  for any nucleus A, we need the nuclear SFs.  

Within our approach we have:

RA
EMC(x) =

FA
2 (x)

Fd
2(x)

FA
2 (x) = ∑

N
∫

1

ξmin

dξ FN
2 ( mx

ξMA ) fN
A (ξ) * longitudinal momentum fraction carried 

         by a nucleon in the nucleus
ξ =

1) in the Bjorken limit we have the LCMD: fN
1 (ξ) = ⨋ dϵ∫

dκ⊥

(2π)3

1
2κ+

PN(κ̃, ϵ)
Es

1 − ξ
Unpolarized LF spectral function:


PN(κ̃, ϵ) =
1

2j + 1 ∑
ℳ

PN
σσ(κ̃, ϵ, S, ℳ)

Since our approach fulfill both macro-locality and Poincaré covariance the LC momentum distribution satisfies 2 
essential sum rules at the same time ():              

 : Baryon number SR;    

 : Momentum SR (MSR)

A = ∫
1

0
dξ[Zf p

1 (ξ) + (A − Z)f n(ξ)]

1 = Z < ξ >p + (Z − N) < ξ >n ; < ξ >N = ∫
1

0
dξ ξ fN

1 (ξ)
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Nuclear SFs and EMC ratio
To calculate the EMC ratio  for any nucleus A, we need the nuclear SFs.  

Within our approach we have:

RA
EMC(x) =

FA
2 (x)

Fd
2(x)

FA
2 (x) = ∑

N
∫

1

ξmin

dξ FN
2 ( mx

ξMA ) fN
A (ξ) * longitudinal momentum fraction carried 

         by a nucleon in the nucleus
ξ =

1) in the Bjorken limit we have the LCMD: fN
1 (ξ) = ⨋ dϵ∫

dκ⊥

(2π)3

1
2κ+

PN(κ̃, ϵ)
Es

1 − ξ
Unpolarized LF spectral function:


PN(κ̃, ϵ) =
1

2j + 1 ∑
ℳ

PN
σσ(κ̃, ϵ, S, ℳ)

2) The free nucleon SFs E.Pace, M.Rinaldi, G.Salmè and S. Scopetta, Phys. Scr. 95, 064008 (2020):

a) we choose a parametrization  for   
b) we use the MARATHON data (MARATHON Coll., Phys. Rev. Lett 128 (2022) 13,132003)  

     for the parametrization of the ratio  to get 

Fp
2 (x)

Fn
2

Fp
2

Fn
2
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The EMC effect for 3HeE.Pace, M.R. G.Salmè and S.Scopetta, Phys. Lett. B 839(2023) 127810

Solid line: Av18/UIX + SMC* 
Dashed line:Av18 + SMC* 
Dotted-dashed: Av18/UIX 
+CJ15**

Small but solid effect, comparable to the experimental data

Full squares: JLab data 
from experiment E03103 
[1] as reanalyzed in [2]

[1] J. Arrington, et al,  
Phys. Rev. C 104 (6) 
(2021) 065203 

[2] S. A. Kulagin and R. 
Petti, Phys. Rev. C 82, 
054614 (2010)

*[B. Adeva, et al., Phys. Lett. B 412 
(1997) 414–424.]

**[A. Accardi, L. T. Brady, W. 
Melnitchouk, J. F. Owens, N. Sato,
Phys. Rev. D 93 (11) (2016) 114017]
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The EMC effect for 4He
F.Fornetti, E.Pace, M.R., G.Salmè, S.Scopetta and M.Viviani,  Phys.Lett.B 851 (2024) 138587

Full squares: JLab data 
from experiment 
E03103 

Both lines calculated with 
Av18/UIX 
Solid line: SMC parametrization 
of  *   
Dashed line: CJ15 +TMC 
Parametrization of ** 

 extracted from MARATHON 
data 

Fp
2

Fp
2

Fn
2

*[B. Adeva, et al., Phys. Lett. B 412 
(1997) 414–424.]

**[A. Accardi, L. T. Brady, W. 
Melnitchouk, J. F. Owens, N. Sato, Phys. 
Rev. D 93 (11) (2016) 114017]

The dependence on the choice of the free nucleon SFs is largely under control in the properly EMC region
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The EMC effect for 4He
F.Fornetti, E.Pace, M.R., G.Salmè, S.Scopetta and M.Viviani,  Phys.Lett.B 851 (2024) 138587

Full squares: JLab data 
from experiment 
E03103 

Both lines calculated with 
Av18/UIX 
Solid line: SMC parametrization 
of  *   

 extracted from MARATHON 
data 

Fp
2

Fn
2

*[B. Adeva, et al., Phys. Lett. B 412 
(1997) 414–424.]

Effective interactionsχ
 AV18 + UIX(NNN)
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Recent (ongoing) calculations
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Data from: 
D. Abrams, H. Albataineh, B.~S. Aljawrneh,…,et al,  
``The EMC Effect of Tritium and Helium-3 from the JLab MARATHON Experiment,'' 
[arXiv:2410.12099 [nucl-ex]]. 
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Some recents works…
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Calculation of the spin dependent 3He structure functions within the Light-Front covariant approach:

F. Fornetti, E. Proietti…, M. R. et al, PRC 110 (2024), 3, L031303

Also in this case there are no 
free parameters and the 3He 
w.f. corresponding to the Av18 
potential has been used 
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Some recents works…
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Extraction of the neutron spin dependent structure from 3He data:

F. Fornetti, E. Proietti…, M. R. et al, PRC 110 (2024), 3, L031303

with the effective polarizations obtained 
from the 3He w.f.

The 3He spin structure is makes this nucleus unique to extract the neutron distributions!

Points: extracted  
from  3He data  
using  our formula 

Line: M. Gluck, et al, 
Phys. Rev. D 63, 
094005 (2001).
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Conclusions

51

EMC of light-nuclei within a Poincaré covariant LF approach
We developed a rigorous formalism for the calculation of nuclear SFs (also for TMDs)  

    involving only nucleonic DOF with the conventional nuclear physics 
 For 3He we obtain results in agreement with experimental data  

    for the EMC effect. Useful analysis for planned experiments in future facilities 

Inclusion of the fully Poincaré relativistic approach to Generalized Parton Distributions  
 

For  the deviations from experimental data could be ascribed to genuine QCD effects: 
    our results provide a reliable baseline to study exotic phenomena 

To do next

Include off-shell effects

Application of the approach to heavier nuclei (6Li starting project)

Studying Double Parton Distributions of light-nuclei (in preparation)
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0 0.2 0.4 0.6 0.8 1
x

0.95

1

1.05

1.1

1.15

1.2

(x
)

EM
C

R

Results similar to  and 3He 4He

Solid line: Av18/UIX; Dashed-line: NVIb/UIX
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MARATHON coll. : experimental data of the super-ratio  Rht(x) = F3He
2 (x)/F3H

2 (x)

: 2p + n; : n + 2p3He 3H

Is possible to extract the ratio  through the super-ratioFn
2(x)/Fp

2 (x)

Dashed line: ratio from SMC collaboration

Empty squares: MARATHON extraction

Solid line: cubic and conic extractions from  SMC parametrization, fitted to 
MARATHON data

Fp
2

E.Pace, M.Rinaldi, G.Salmè and S.Scopetta Phys. Lett. B 839(2023) 127810
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Wigner rotation for the J=1/2 case

           is the Melosh rotation connecting the intrinsic LF and canonical frames, reached through different boosts  
from a given frame where the particle is moving

two-dimensional spinor

In Instant form (initial hyperplane t=0), one can couple spins and orbital angular momenta via Clebsch-Gordan  
(CG) coefficients. In this form the three rotation generators are independent of the the interaction. 

To embed the CG machinery in the LFHD one needs unitary operators, the so-called Melosh rotations that 
relate the LF spin wave function and the canonical one. For a particle of spin (1/2) with LF momentum 
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PROTON                                                                     NEUTRON
Numerical results A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmè and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204) 
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PROTON                                                                     NEUTRON
Numerical results A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmè and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204) 
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Ws,μν
A = ∑

N
∑

σ
⨋ dϵ∫

dκ⊥dκ+

2(2π)3κ+

1
ξ

PN(κ̃, ϵ) ws,μν
N,σ (p, q) hadronic tensor of the 

nucleon

is parametrized by the SFs  and :Ws,μν
A FA

2 (x) FA
1 (x)

Where  and  with x =
Q2

2PA ⋅ q
ξ =

κ+

ℳ0[1; 2,3,…, A − 1]
z =

Q2

2p ⋅ q
=

p
P+

A

x
ξ

Unpolarized LF spectral function:


PN(κ̃, ϵ) =
1

2j + 1 ∑
ℳ

PN
σσ(κ̃, ϵ, S, ℳ)

Free nucleon SFFA
2 (x) = −

1
2

xgμνW
s,μν
A = ∑

N
∑

σ
∫ dϵ∫

dκ⊥

(2π)3

dκ+

2κ+
PN(κ̃, ϵ)FN

2 (z)

* E.Pace, M.Rinaldi, G.Salmè and S. Scopetta, Phys. Scr. 95, 064008 (2020)
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In the Bjorken limit  so we can use the light-cone momentum distribution 

(LCMD) instead of the LF spectral function *
∫ dϵ∫ dκ+ = ∫ dκ+ ∫ dϵ

FA
2 (x) = −

1
2

xgμνW
s,μν
A = ∑

N
∑

σ
∫ dϵ∫

dκ⊥

(2π)3

dκ+

2κ+
PN(κ̃, ϵ)FN

2 (z)

LCMD: fN
1 (ξ) = ⨋ dϵ∫

dκ⊥

(2π)3

1
2κ+

PN(κ̃, ϵ)
Es

1 − ξ
= ∫ dk⊥nn(ξ, k⊥)

LF momentum distribution: 

nN(ξ, k⊥) =
1

2π ∫
A−1

∏
i=2

[dki] |
∂kz

∂ξ
| 𝒩N(k, k2, …, kA−1)

Squared nuclear wave function. Thanks to 
the BT construction, one is allowed to 
use the NR one

Determinant of the Jacobian matrix. LF boost: effect of a Poincaré 
covariance approach

* A. Del Dotto, E.Pace, G. Salmè and S.Scopetta,  Phys. Rev. C 95,014001 (2017)
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f 1
(ξ
)

ξ

• The tails of the distributions are generated by 
the short range correlations (SRC) induced by 
the potentials (i.e the high-momentum content of 
the 1-body momentum distribution)


• The tails of the LC momentum distribution 
calculated by the Av18/UIX potential is larger 
than the ones obtained by the EFT potentials 
for both  and deuteron


χ
4He

The distributions are peaked at 1/A with an accuracy of 1/1000:


LC momentum distribution for  (peaked at 0.25) and deuteron (peaked at 4He

F.F, E.Pace, M.Rinaldi, G.Salmè, S.Scopetta and M.Viviani,  Phys.Lett.B 851 (2024) 
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Wa,μν
A = ∑

N
∑

σ
⨋ dϵ∫

dκdκ+

2(2π)3κ+

1
ξ

PN
σ (κ̃, ϵ, S, ℳ) wa,μν

N,σ (p, q)

For the polarized DIS we need to calculate the antysimmetric part of the hadronic tensor:

Spin-dependent LF spectral function

 is parametrized by the the spin-dependent SFs (SSFs)  and Wa,μν
A gA

1 (x, Q2) gA
2 (x, Q2)

As for the unpolarized case, in the Bjorken limit we can write a convolution formula for the SSFs:

, gA
j (x) = ∑

N
∫

1

ξm

dξ[gN
1 (z)lN

j (ξ)+gN
2 (z)hN

j (ξ)] j = 1,2

hadronic tensor of the

nucleon
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The spin-dependent LCMD  and  are related to the transverse momentum-lN
j (ξ) hN

j (ξ)

We used the TMDs for  calculated with the Av18 potential in Ref. [1]3He

[1] R.Alessandro, A.Del Dotto, E.Pace, G.Perna, G.Salmè and S.Scopetta,  Phys.Rev.C 104(2021) 6,065204

GRSV parametrization [2] for the  SSFgN
1 (x)

 extracted by  with the Wandzura-Wilczek formula [3]:
gN
2 (x) gN

1 (x)

gN
2 (x) = − gN

1 (x) + ∫
1

x
dy

gN
1 (y)
y

[2] M. Glück, E. Reya, M. Stratmann, and W. Vogelsang, Phys. Rev. D 63, 094005 (2001)

[3] S. Wandzura and F. Wilczek, Phys. Lett. B 72, 195 (1977)

, gA
j (x) = ∑

N
∫

1

ξm

dξ[gN
1 (z)lN

j (ξ)+gN
2 (z)hN

j (ξ)] j = 1,2
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gA
j (x) = ∑

N
∫

1

ξm

dξ[gN
1 (z)lN

j (ξ)+gN
2 (z)hN

j (ξ)]

One can approximate this equation using that  are peaked around  and so lN
j (ξ), hN

j (ξ) ξ ≃ 1/A

gn̄
j (x) =

1
pn

j
[g3He

j (x) − 2pp
j gp

j (x)]

We compared our extraction of the neutron SSFS with the one of the GRSV parametrization 
and with the NR extraction, obtained through the effective polarizations calculated from a NR 

 and pN
1 = ∫

1

0
dξ∫ dk⊥Δf(ξ, k⊥) pN

2 = ∫
1

0
dξ∫ dk⊥Δ′ T f(ξ, k⊥)

Where the effective polarization  are integral of the TMDs  and *pN
j Δf(ξ, k⊥) Δ′ T f(ξ, k⊥)


