The EMC effect of light-nuclei within the light-front Hamiltonian dynamics

Matteo Rinaldi

INFN section of Perugia

In collaboration with:

 Sergio Scopetta (Perugia, Italy) Michele Viviani (Pisa, Italy) Emanuele Pace (Roma, Italy) Giovanni Salmè (Roma, Italy) Filippo Fornetti (Perugia, Italy) Eleonora Proietti (Pisa, italy)

Istituto Nazionale di Fisica Nucleare STOZIONG TI KOTIBAN

Outline

Nuclear Structure Functions (SFs) with Relativistic Hamiltonian Dynamics

- The EMC effect 63
- The Light-Front Poincaré covariant approach C
- 6
- Numerical results for the EMC effect 8
- 3 *He* \bullet Numerical results for the ³He Spin dependent SFs
	- Conclusions

63

 $0.2 \le x \le 0.8$ "EMC (binding) region": mainly valence quarks involved

Naive parton model interpretation:

"Valence quarks, in the bound nucleon, are in average slower that in the free nucleon"

 $0.2 \le x \le 0.8$ "EMC (binding) region": mainly valence quarks involved

Is the bound proton bigger than the free one??

 $\frac{\mathbf{F_2^A}}{\mathbf{F_2^d}}$

 $0.2 \le x \le 0.8$ "EMC (binding) region": mainly valence quarks involved

main features: universal behavior independent on Q^2 ; weakly dependent on A; Scales with the density $\rho \rightarrow$ global property? Or due to $SRC \rightarrow$ local property?

 $\frac{\mathbf{F_2^A}}{\mathbf{F_2^d}}$

 $0.2 \le x \le 0.8$ "EMC (binding) region": mainly valence quarks involved

Explanation (exotic) advocated: confinement radius bigger for bound nucleons, quarks in bags with 6, 9,..., 3A **quark, pion cloud effects... Alone or mixed with conventional ones...**

 $\frac{\mathbf{F_2^A}}{\mathbf{F_2^d}}$

In DIS off a nuclear target with A nucleons: $0 \le x = \frac{Q^2}{2M\nu} \le \frac{M_A}{M} \simeq A$

Explanation (exotic) advocated: confinement radius bigger for bound nucleons, quarks in bags with 6, 9,..., 3A **quark, pion cloud effects... Alone or mixed with conventional ones...**

 $\frac{\mathbf{F_2^A}}{\mathbf{F_2^d}}$

 $0.2 \le x \le 0.8$ "EMC (binding) region": mainly valence quarks involved

Matteo Rinaldi 8

Matteo Rinaldi 8

Matteo Rinaldi 9 Pulab at 22 GeV (LNF-INFN 2024)

In general, the lack of the Poincarè covariance and macroscopic locality* generates biases for the study of genuine QCD effects (nucleon swelling, exotic quark configurations ...)

space-time regions must commute in the limit of large space like separation (i.e. causally disconnected).

- In general, the lack of the Poincare covariance and macroscopic locality* generates biases for the study of genuine QCD effects (nucleon swelling, exotic quark configurations …)
- Macroscopic locality (= cluster separability (relevant in nuclear physics)): i.e. observables associated to different
- In this way, when a system is separated into disjoint subsystems by a sufficiently large space like separation, then the
	-
	-

Matteo Rinaldi 10

10 **B.D.Keister and W.N.Polyzou, Adv.Nucl.Phys. 20 (1991), 225-479**

subsystems behave as independent systems

B.D.Keister and W.N.Polyzou, Adv.Nucl.Phys. 20 (1991), 225-479 P. A. M. Dirac, Rev. Mod. Phys. 21 (1949) 392–399

B. Bakamjian, L. H. Thomas, Phys. Rev. 92 (1953) 1300–1310

Matteo Rinaldi 11 Matteo Rinaldi 11

B.D.Keister and W.N.Polyzou, Adv.Nucl.Phys. 20 (1991), 225-479 P. A. M. Dirac, Rev. Mod. Phys. 21 (1949) 392–399

B. Bakamjian, L. H. Thomas, Phys. Rev. 92 (1953) 1300–1310

Matteo Rinaldi 12

12

B.D.Keister and W.N.Polyzou, Adv.Nucl.Phys. 20 (1991), 225-479 P. A. M. Dirac, Rev. Mod. Phys. 21 (1949) 392–399

B. Bakamjian, L. H. Thomas, Phys. Rev. 92 (1953) 1300–1310

Matteo Rinaldi 13

13

Only nucleonic d.o.f.

We provide a reliable baseline for the calculation of the nuclear SFs where only the well known nuclear part is considered

⁹ This relativistic treatment is needed for the kinematics of the JLab12, JLab22 and EIC

Matteo Rinaldi 14

14 JLab at 22 GeV (LNF-INFN 2024)

Conventional nuclear Physics Standard Model of Few-Nucleon Systems achieved high-sophistication!

 $Poincaré covariance \rightarrow Find 10 generators:$ $P^{\mu} \rightarrow 4D$ displacements and $M^{\nu\mu} \rightarrow$ Lorentz transformation, that fulfill:

 $[P^{\mu}, P^{\nu}] = 0; [M^{\mu\nu}, P^{\rho}]$

$$
[P^{\mu}, P^{\nu}] = 0; [M^{\mu\nu}, P^{\rho}] = -i(g^{\mu\rho}P^{\nu} - g^{\nu\rho}P^{\mu})
$$

$$
[M^{\mu\nu}, M^{\rho\sigma}] = -i(g^{\mu\rho}M^{\nu\sigma} + g^{\nu\sigma}M^{\mu\rho} - g^{\mu\sigma}M^{\nu\rho} - g^{\nu\sigma}M^{\mu\sigma})
$$

• 7 Kinematical generators (max n°): i) 3 LF boosts (in instant form they are dynamical!); in the same was not ii) $\tilde{P} = (P^+ = P^0 + P^3, P_+)$; iii) Rotation around the z-axis • The LF boosts have a subgroup structure: trivial separation of intrinsic and global motion, as in the NR case • $P^+ \ge 0$ → meaningful Fock expansion, once massless constituents are absent • The infinite-monentum frame (IMF) description of DIS is easily included

Matteo Rinaldi 15

15

 $Poincaré covariance \rightarrow Find 10 generators:$ $P^{\mu} \rightarrow 4D$ displacements and $M^{\nu\mu} \rightarrow$ Lorentz transformation, that fulfill:

 $[P^{\mu}, P^{\nu}] = 0; [M^{\mu\nu}, P^{\rho}]$

Such a goal can be achieved in different equivalent ways depending on the initial conditions

$$
[P^{\mu}, P^{\nu}] = 0; [M^{\mu\nu}, P^{\rho}] = -i(g^{\mu\rho}P^{\nu} - g^{\nu\rho}P^{\mu})
$$

$$
[M^{\mu\nu}, M^{\rho\sigma}] = -i(g^{\mu\rho}M^{\nu\sigma} + g^{\nu\sigma}M^{\mu\rho} - g^{\mu\sigma}M^{\nu\rho} - g^{\nu\sigma}M^{\mu\sigma})
$$

• 7 Kinematical generators (max n°): i) 3 LF boosts (in instant form they are dynamical!); in the same was not ii) $\tilde{P} = (P^+ = P^0 + P^3, P_+)$; iii) Rotation around the z-axis • The LF boosts have a subgroup structure: trivial separation of intrinsic and global motion, as in the NR case • $P^+ \ge 0$ → meaningful Fock expansion, once massless constituents are absent • The infinite-monentum frame (IMF) description of DIS is easily included

Matteo Rinaldi 16

16

 $Poincaré covariance \rightarrow Find 10 generators:$ $P^{\mu} \rightarrow 4D$ displacements and $M^{\nu\mu} \rightarrow$ Lorentz transformation, that fulfill:

 $[P^{\mu}, P^{\nu}] = 0; [M^{\mu\nu}, P^{\rho}]$

Such a goal can be achieved in different equivalent ways depending on the initial conditions

$$
[P^{\mu}, P^{\nu}] = 0; [M^{\mu\nu}, P^{\rho}] = -i(g^{\mu\rho}P^{\nu} - g^{\nu\rho}P^{\mu})
$$

\n
$$
[M^{\mu\nu}, M^{\rho\sigma}] = -i(g^{\mu\rho}M^{\nu\sigma} + g^{\nu\sigma}M^{\mu\rho} - g^{\mu\sigma}M^{\nu\rho} - g^{\nu\sigma}M^{\mu\sigma})
$$

\n
$$
F = x^0 = 0
$$

\nIt was

• 7 Kinematical generators (max n°): i) 3 LF boosts (in instant form they are dynamical!); in the same was ii) $\tilde{P} = (P^+ = P^0 + P^3, P_+)$; iii) Rotation around the z-axis • The LF boosts have a subgroup structure: trivial separation of intrinsic and global motion, as in the NR case • $P^+ \ge 0$ → meaningful Fock expansion, once massless constituents are absent • The infinite-monentum frame (IMF) description of DIS is easily included

Matteo Rinaldi 17

17

 $Poincaré covariance \rightarrow Find 10 generators:$ $P^{\mu} \rightarrow 4D$ displacements and $M^{\nu\mu} \rightarrow$ Lorentz transformation, that fulfill:

 $[P^{\mu}, P^{\nu}] = 0; [M^{\mu\nu}, P^{\rho}]$

Such a goal can be achieved in different equivalent ways depending on the initial conditions

$$
[P^{\mu}, P^{\nu}] = 0; [M^{\mu\nu}, P^{\rho}] = -i(g^{\mu\rho}P^{\nu} - g^{\nu\rho}P^{\mu})
$$

\n
$$
[M^{\mu\nu}, M^{\rho\sigma}] = -i(g^{\mu\rho}M^{\nu\sigma} + g^{\nu\sigma}M^{\mu\rho} - g^{\mu\sigma}M^{\nu\rho} - g^{\nu\sigma}M^{\mu\sigma})
$$

\n
$$
F
$$

• 7 Kinematical generators (max n°): i) 3 LF boosts (in instant form they are dynamical!); The front form $\tilde{P} = (P^+ = P^0 + P^3, P_+)$; iii) Rotation around the z-axis • The LF boosts have a subgroup structure: trivial separation of intrinsic and global motion, as in the NR case • $P^+ \ge 0$ → meaningful Fock expansion, once massless constituents are absent • The infinite-monentum frame (IMF) description of DIS is easily included

Matteo Rinaldi 18

18 Matteo Rinaldi 18

 $Poincaré covariance \rightarrow Find 10 generators:$ $P^{\mu} \rightarrow 4D$ displacements and $M^{\nu\mu} \rightarrow$ Lorentz transformation, that fulfill:

Such a goal can be achieved in different equivalent ways depending on the initial conditions | E

• 7 Kinematical generators (max n°): i) 3 LF boosts (in instant form they are dynamical!); The front form $\tilde{P} = (P^+ = P^0 + P^3, P_+)$; iii) Rotation around the z-axis • The LF boosts have a subgroup structure: trivial separation of intrinsic and global motion, as in the NR case • $P^+ \ge 0$ → meaningful Fock expansion, once massless constituents are absent • The infinite-monentum frame (IMF) description of DIS is easily included

Matteo Rinaldi 19

19 Matteo Rinaldi 19

LF approach in pills

 $Poincaré covariance \rightarrow Find 10 generators:$ $P^{\mu} \rightarrow 4D$ displacements and $M^{\nu\mu} \rightarrow$ Lorentz transformation, that fulfill:

Such a goal can be achieved in different equivalent ways depending on the initial conditions | E

- 7 Kinematical generators (max n°): i) 3 LF boosts (in instant form they are dynamical!); The front formil) $\tilde{P} = (P^+ = P^0 + P^3, P_+)$; iii) Rotation around the z-axis
- The LF boosts have a subgroup structure: trivial separation of intrinsic and global motion, as in the NR case
- $P^+ \geq 0$ → meaningful Fock expansion, once massless constituents are absent
- The infinite-monentum frame (IMF) description of DIS is easily included

- i) Only the mass operator M contains the interaction
- ii) It generates the dependence of the 3 dynamical generators (P^- and LF transverse rotations)
- iii) The eigenvalue equation $M^2 |\psi\rangle = s |\psi\rangle$ is formally equivalent to the Schrödinger equation

BT properly constructed the 10 Poincaré operators in presence of interactions following this scheme:

- BT properly constructed the 10 Poincaré operators in presence of interactions following this scheme:
- i) Only the mass operator M contains the interaction
- ii) It generates the dependence of the 3 dynamical generators (P^- and LF transverse rotations)
- iii) The eigenvalue equation $M^2 |\psi\rangle = s |\psi\rangle$ is formally equivalent to the Schrödinger equation

 \mathbf{F} or a nucleus A: $M_{BT}[1, 2, 3, ..., A] = M_0[1, 2, 3, ..., A] + V(\mathbf{k}^2; \mathbf{k} \cdot \mathbf{k}_i; \mathbf{k}_j \cdot \mathbf{k}_i)$

LF + Bakamjian-Thomas construction

- BT properly constructed the 10 Poincaré operators in presence of interactions following this scheme:
- i) Only the mass operator M contains the interaction
- ii) It generates the dependence of the 3 dynamical generators (P^- and LF transverse rotations)
- iii) The eigenvalue equation $M^2 |\psi\rangle = s |\psi\rangle$ is formally equivalent to the Schrödinger equation
	- \mathbf{F} or a nucleus A: $M_{BT}[1, 2, 3, ..., A] = M_0[1, 2, 3, ..., A] + V(\mathbf{k}^2; \mathbf{k} \cdot \mathbf{k}_i; \mathbf{k}_j \cdot \mathbf{k}_i)$ Free mass

A ∑ *i*=1 $\mathbf{k}_i = 0$ $M_0[1,2,3,...,A] =$ *A* ∑ *i*

BT properly constructed the 10 Poincaré operators in presence of interactions following this scheme:

-
- i) Only the mass operator M contains the interaction
- ii) It generates the dependence of the 3 dynamical generators (P^- and LF transverse rotations)
- iii) The eigenvalue equation $M^2 |\psi\rangle = s |\psi\rangle$ is formally equivalent to the Schrödinger equation
	- \mathbf{F} or a nucleus A: $M_{BT}[1, 2, 3, ..., A] = M_0[1, 2, 3, ..., A] + [V(\mathbf{k}^2; \mathbf{k} \cdot \mathbf{k}_i; \mathbf{k}_j \cdot \mathbf{k}_i)]$ Free mass

A ∑ *i*=1 $\mathbf{k}_i = 0$ $M_0[1,2,3,...,A] =$ *A* ∑ *i*

2 & 3 body forces operator

 \mathbf{F} or a nucleus A: $M_{BT}[1, 2, 3, ..., A] = M_0[1, 2, 3, ..., A] + [V(\mathbf{k}^2; \mathbf{k} \cdot \mathbf{k}_i; \mathbf{k}_j \cdot \mathbf{k}_i)]$ Free mass i) Only the mass operator M contains the interaction ii) It generates the dependence of the 3 dynamical generators (P^- and LF transverse rotations) iii) The eigenvalue equation $M^2 |\psi\rangle = s |\psi\rangle$ is formally equivalent to the Schrödinger equation

BT properly constructed the 10 Poincaré operators in presence of interactions following this scheme:

A ∑ *i*=1 $\mathbf{k}_i = 0$ $M_0[1,2,3,...,A] =$ *A* ∑ *i*

2 & 3 body forces operator

From this construction:

1) The commutation rules impose to V invariance for translations and rotations as well as independence on the total momentum, as it occurs for V^{NR}

i) Only the mass operator M contains the interaction

 \mathbf{F} or a nucleus A: $M_{BT}[1, 2, 3, ..., A] = M_0[1, 2, 3, ..., A] + [V(\mathbf{k}^2; \mathbf{k} \cdot \mathbf{k}_i; \mathbf{k}_j \cdot \mathbf{k}_i)]$ Free mass ii) It generates the dependence of the 3 dynamical generators (P^- and LF transverse rotations) iii) The eigenvalue equation $M^2 |\psi\rangle = s |\psi\rangle$ is formally equivalent to the Schrödinger equation

BT properly constructed the 10 Poincaré operators in presence of interactions following this scheme:

-
-

A ∑ *i*=1 $\mathbf{k}_i = 0$ $M_0[1,2,3,...,A] =$ *A* ∑ *i*

1) The commutation rules impose to V invariance for translations and rotations as well as independence on the total momentum, as it occurs for V^{NR} 2) One can assume *MBT*[1,2,…, *A*] ∼ *MNR*

2 & 3 body forces operator

From this construction:

i) Only the mass operator M contains the interaction ii) It generates the dependence of the 3 dynamical generators (P[−] and LF transverse rotations) *iii*) The eigenvalue equation M^2 | **Therefore what has been learned till rödinger equation** BT properly constructed the 10 Nincaré of erators in prefence of interactions following this scheme: For a nucleus A: $M_{BT}[1,2,3,...,$ within a non-relativistic framework, about From this construction: $1)$ The commutation rules in positive for \mathcal{L}_1 , \mathcal{L}_2 is invariant for the rotations and rotations as \mathcal{L}_1 well as independence on the total momentum, as it provis for *V* $2)$ One

A

∑

 $\mathbf{k}_i = 0$

i=1

can be re-used in a Poincaré covariant framework. now about the nuclear interaction,

*M*0[1,2,3,…, *A*] =

A

∑

i

VNR

Our approach: Reference frames

- In order to implement macro-locality, it is crucial to distinguish between different frames:
- The Lab frame, where *P* • The intrinsic LF frame of the whole system, $P = (M_0[1, 2, \ldots, A], 0_\perp)$ with ˜ $=(M_{BT}, 0_⊥)$ ˜ $= (M_0[1, 2, \ldots, A], \mathbf{0}_{\perp})$

 $k_i^+ = \xi_i M_0[1, 2, ..., A]$ and $M_0[1, 2, ..., A] =$

• The intrinsic LF frame of the cluster [1; 2,3,..., (A − 1)] where $P = (\mathcal{M}_0[1; 2, 3, \dots, A-1]), 0_1)$ with ˜ $=$ $(\mathcal{M}_0[1; 2, 3, \dots, A-1]), 0_$

 $k^+ = \xi \mathcal{M}_0[1; 2, 3, ..., A-1]$ and $k^+ = \xi \mathcal{M}_0[1; 2, 3, ..., A-1]$ and $\mathcal{M}_0[1; 2, 3, ..., A-1] = \sqrt{m^2 + \kappa^2} + \sqrt{M_s^2}$

[1,2,…, *A*]

$$
\sum_{i=1}^{A} \sqrt{m^2 + k_i^2}
$$

,..., $(A - 1)$] when

$$
..., A - 1] = \sqrt{m^2 + \kappa^2} + \sqrt{M_s^2 + \kappa^2}
$$

Our approach: Reference frames

In order to implement macro-locality, it is crucial to distinguish between different frames:

• The Lab frame, where *P* • The intrinsic LF frame of the whole system, $P = (M_0[1, 2, \ldots, A], \mathbf{0}_{\perp})$ with $\bf\widetilde{D}$ $=(M_{BT}, 0_+)$ \tilde{D} $=$ $(M_0[1,2,...,A], 0_1)$

 $k_i^+ = \xi_i M_0[1, 2, ..., A]$ and $M_0[1, 2, ..., A]$ =

• The intrinsic LF frame of the cluster [1; 2,3,..., (*A* − 1)] where $P = (\mathcal{M}_0[1; 2, 3, \dots, A-1]), 0_1)$ with \tilde{D} $=$ $(\mathcal{M}_0[1; 2, 3, \dots, A-1]), 0_$

 $k^+ = \xi \mathcal{M}_0[1; 2, 3, ..., A-1]$ and $k^+ = \xi \mathcal{M}_0[1; 2, 3, ..., A-1]$ and $\mathcal{M}_0[1; 2, 3, ..., A-1] = \sqrt{m^2 + \kappa^2} + \sqrt{M_s^2}$

[1,2,…, *A*]

$$
\sum_{i=1}^{A} \sqrt{m^2 + \mathbf{k}_i^2}
$$

,..., $(A - 1)$ when

$$
..., A - 1] = \sqrt{m^2 + \kappa^2} + \sqrt{M_s^2 + \kappa^2}
$$

Our approach: Reference frames

In order to implement macro-locality, it is crucial to distinguish between different frames:

- The Lab frame, where *P* $\bf\widetilde{D}$ $=(M_{BT}, 0_+)$
- The intrinsic LF frame of the whole system, [1,2,..., *A*], where $P = (M_0[1, 2, ..., A], \mathbf{0}_{\perp})$ with $\bf\widetilde{D}$ $= (M_0[1,2,...,A], 0_{\perp})$

 $k_i^+ = \xi_i M_0[1, 2, ..., A]$ and $M_0[1, 2, ..., A]$

• The intrinsic LF frame of the cluster [1; 2,3,..., (*A* − 1)] where $P = (\mathcal{M}_0[1; 2, 3, \dots, A-1]), 0_1)$ with \tilde{D} $=$ $(\mathcal{M}_0[1; 2, 3, \dots, A-1]), 0_$

 $k^+ = \xi \mathcal{M}_0[1; 2, 3, ..., A-1]$ and

$$
\sum_{i=1}^{A} \sqrt{m^2 + \mathbf{k}_i^2}
$$

,..., $(A - 1)$ 1 when

$$
k^{+} = \xi \mathcal{M}_{0}[1; 2, 3, ..., A-1] \text{ and } \mathcal{M}_{0}[1; 2, 3, ..., A-1] = \sqrt{m^{2} + \kappa^{2}} + \sqrt{M_{s}^{2} + \kappa^{2}}
$$

Our approach: Reference frames

In order to implement macro-locality, it is crucial to distinguish between different frames:

is the mass of the fully interacting spectator system $M_s = (A - 1)m + \epsilon$

- The Lab frame, where *P* $\bf\widetilde{D}$ $=(M_{BT}, 0_+)$
- The intrinsic LF frame of the whole system, [1,2,..., *A*], where $P = (M_0[1, 2, ..., A], \mathbf{0}_{\perp})$ with $\bf\widetilde{D}$ $= (M_0[1,2,...,A], 0_{\perp})$

 $k_i^+ = \xi_i M_0[1, 2, ..., A]$ and $M_0[1, 2, ..., A]$

• The intrinsic LF frame of the cluster $[1; 2, 3, ..., (A - 1)]$ where $P = (\mathcal{M}_0[1; 2, 3, ..., A-1]), 0_1)$ with $\widetilde{\mathbf{D}}$ $=$ $(\mathcal{M}_0[1; 2, 3, \dots, A-1]), 0_$

 $k^+ = \xi \mathcal{M}_0[1; 2, 3, ..., A-1]$ and $k^{+} = \xi \mathscr{M}_{0}[1; 2, 3, \ldots, A-1]$ and $\mathscr{M}_{0}[1; 2, 3, \ldots, A-1] = \sqrt{m^{2} + \kappa^{2} + \sqrt{M_{s}^{2}}}$

While
$$
p_{\perp}^{LAB} = k_{1\perp} = k_{\perp}
$$

$$
\sum_{i=1}^{A} \sqrt{m^2 + \mathbf{k}_i^2}
$$

,..., $(A - 1)$] when

$$
..., A - 1] = \sqrt{m^2 + \kappa^2} + \sqrt{M_s^2 + \kappa^2}
$$

Our approach: LF spectral function I

 $P_{\sigma'\sigma}^N(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{\sigma'} \sum_{\sigma'}$ *JJz TTz*

 $\rho(\epsilon)_{LF} < tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} \,|\, \Psi_{JM}; \mathbf{S}, T_A T_{Az} > < \Psi_{JM}; \mathbf{S}, T_A T_{Az}|_{LF} tT; \alpha, \epsilon; JJ_z; \tau\sigma, \tilde{\kappa} >_{LF}$

Since we use an impulse approximation assumption, we rely on the spin-dependent LF spectral function *Pτ ^σ*′*σ*(*κ*˜, *ϵ*, **S**, *M*)

Since we use an impulse approximation assumption, we rely on the spin-dependent LF spectral function

 $\tilde{\kappa}$ | Ψ_{JM} ; S , $T_A T_{Az}$ > < Ψ_{JM} ; S , $T_A T_{Az}|_{LF} tT$; α , ϵ ; JJ_z ; $\tau \sigma$, $\tilde{\kappa}$ >_{LF}

 $|tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} >_{LF}$ is the **tensor product** of the plane wave of the struck nucleon and the state of the fully interacting spectator system $[2,..., A-1]$ in the intrinsic reference frame of the cluster $[1; 2, 3,..., A-1]$ when the

Pτ ^σ′*σ*(*κ*˜, *ϵ*, **S**, *M*)

$$
P_{\sigma'\sigma}^N(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{J J_z} \sum_{TT_z} \rho(\epsilon)_{LF} < tT; \alpha, \epsilon; J J_z; \tau\sigma', \tau
$$

spectator system has energy ϵ . It fulfills the macrolocality*

Our approach: LF spectral function I

Since we use an impulse approximation assumption, we rely on the spin-dependent LF spectral function

 $\tilde{\kappa}$ | Ψ_{JM} ; S , $T_A T_{A}$ > < Ψ_{JM} ; S , $T_A T_{A}$, $|_{LF} tT$; α , ϵ ; JJ _; $\tau\sigma$, $\tilde{\kappa}$ >_{LF}

 $|tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} >_{LF}$ is the **tensor product** of the plane wave of the struck nucleon and the state of the fully interacting spectator system $[2,..., A-1]$ in the intrinsic reference frame of the cluster $[1; 2, 3,..., A-1]$ when the

Pτ ^σ′*σ*(*κ*˜, *ϵ*, **S**, *M*)

$$
P_{\sigma'\sigma}^N(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{J J_z} \sum_{TT_z} \rho(\epsilon)_{LF} < tT; \alpha, \epsilon; J J_z; \tau\sigma', \tau
$$

spectator system has energy ϵ . It fulfills the macrolocality*

 $|\Psi_{JM}$; **S**, $T_A T_A$, $>$ _{LF} is the eigenstate of $M_{BT}[1,..., A] \sim M^{NR}$ in the intrinsic frame of the system [1,2,…, A]

Our approach: LF spectral function I

Pτ ^σ′*σ*(*κ*˜, *ϵ*, **S**, *M*)

$$
P_{\sigma'\sigma}^N(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{J J_z} \sum_{TT_z} \rho(\epsilon)_{LF} < tT; \alpha, \epsilon; J J_z; \tau\sigma', \tau
$$

spectator system has energy ϵ . It fulfills the macrolocality*

 $|\Psi_{JM}$; **S**, $T_A T_{Az} >_{LF}$ is the eigenstate of $M_{BT}[1,..., A] \sim M^{NR}$ in the intrinsic frame of the system [1,2,…, *A*]

The LF spectral function contains the determinant of the Jacobian of the transformation between the intrinsic frames [1; 2,3,…, *A* − 1]and [1,2,…, *A*], connected each other by a LF boost

Since we use an impulse approximation assumption, we rely on the spin-dependent LF spectral function

 $\tilde{\kappa}$ | Ψ_{JM} ; S , $T_A T_{Az}$ > < Ψ_{JM} ; S , $T_A T_{Az}|_{LF} tT$; α , ϵ ; JJ_z ; $\tau \sigma$, $\tilde{\kappa}$ >_{LF}

 $|tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} >_{LF}$ is the **tensor product** of the plane wave of the struck nucleon and the state of the fully interacting spectator system $[2,..., A-1]$ in the intrinsic reference frame of the cluster $[1; 2, 3,..., A-1]$ when the

Our approach: LF spectral function I

 $P^N_{\sigma'\sigma}(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{\sigma'} \sum_{\sigma'}$ *JJz TTz* Our approach: LF spectral function II

How do we deal with LF states?

$\rho(\epsilon)_{LF} < tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} \,|\, \Psi_{JM}; \mathbf{S}, T_A T_{Az} > < \Psi_{JM}; \mathbf{S}, T_A T_{Az}|_{LF} tT; \alpha, \epsilon; JJ_z; \tau\sigma, \tilde{\kappa} >_{LF}$

$P^N_{\sigma'\sigma}(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{\sigma'} \sum_{\sigma'}$ *JJz TTz* $\rho(\epsilon)_{LF} < tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} \,|\, \Psi_{JM}; \mathbf{S}, T_A T_{Az} > < \Psi_{JM}; \mathbf{S}, T_A T_{Az}|_{LF} tT; \alpha, \epsilon; JJ_z; \tau\sigma, \tilde{\kappa} >_{LF}$ Our approach: LF spectral function II

1) We can express the LF overlap in terms of the IF overlap using Melosh rotations:

 $< tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} | \Psi_{JM}; S, T_A T_{Az} >_{LF} \rightarrow < tT; \alpha, \epsilon; JJ_z; \tau\sigma'_c, \kappa | \Psi_{JM}; S, T_A T_{Az} >_{IF}$

How do we deal with LF states?

$P^N_{\sigma'\sigma}(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{\sigma'} \sum_{\sigma'}$ *JJz TTz* $\rho(\epsilon)_{LF} < tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} \,|\, \Psi_{JM}; \mathbf{S}, T_A T_{Az} > < \Psi_{JM}; \mathbf{S}, T_A T_{Az}|_{LF} tT; \alpha, \epsilon; JJ_z; \tau\sigma, \tilde{\kappa} >_{LF}$ Our approach: LF spectral function II

2) Then we can approximate the IF overlap into a NR overlap by using the NR wave function for the nucleus, thanks to the BT construction:

 $< tT; \alpha, \epsilon; JJ_z; \tau\sigma_c', \kappa | \Psi_{JM}; S, T_A T_{Az} >_{IF} \sim < tT; \alpha, \epsilon; JJ_z; \tau\sigma_c', \kappa | \Psi_{JM}; S, T_A T_{Az} >_{NR}$

1) We can express the LF overlap in terms of the IF overlap using Melosh rotations:

 $< tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} | \Psi_{JM}; S, T_A T_{Az} >_{LF} \rightarrow < tT; \alpha, \epsilon; JJ_z; \tau\sigma'_c, \kappa | \Psi_{JM}; S, T_A T_{Az} >_{IF}$

How do we deal with LF states?

 $\rho(\epsilon)_{LF} < tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} \,|\, \Psi_{JM}; \mathbf{S}, T_A T_{Az} > < \Psi_{JM}; \mathbf{S}, T_A T_{Az}|_{LF} tT; \alpha, \epsilon; JJ_z; \tau\sigma, \tilde{\kappa} >_{LF}$

 $P^N_{\sigma'\sigma}(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{\sigma'} \sum_{\sigma'}$ *JJz TTz*

2) Then we can approximate the IF overlap into a NR overlap by using the NR wave function for the nucleus, thanks to the BT construction:

 $< tT; \alpha, \epsilon; JJ_z; \tau\sigma_c', \kappa | \Psi_{JM}; S, T_A T_{Az} >_{IF} \sim < tT; \alpha, \epsilon; JJ_z; \tau\sigma_c', \kappa | \Psi_{JM}; S, T_A T_{Az} >_{NR}$

Our approach: LF spectral function II

Poincarè covariance preserved but using the successful NR phenomenology

1) We can express the LF overlap in terms of the IF overlap using Melosh rotations:

 $< tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} | \Psi_{JM}; S, T_A T_{Az} >_{LF} \rightarrow < tT; \alpha, \epsilon; JJ_z; \tau\sigma'_c, \kappa | \Psi_{JM}; S, T_A T_{Az} >_{IF}$

How do we deal with LF states?

 $P^N_{\sigma'\sigma}(\tilde{\kappa}, \epsilon, \mathbf{S}, M) = \sum_{\sigma'} \sum_{\sigma'}$ *JJz TTz*

How do we deal with

1) We can express the

 $\langle \langle tT; \alpha, \epsilon; JJ_z; \tau \sigma', \tilde{\kappa} \rangle \rangle$

thanks to the BT const

 $\langle \mathcal{F}, \mathcal{F}, \alpha, \epsilon; JJ_z; \tau \sigma'_{c} \rangle$

Our approach: LF spectral function II

2) Then we can approximate **through 3 different potentials: Av18+UIX*** and 2 versions of the nucleus, $\sqrt{\frac{E}{M}}$ We used wave functions of $^{2}H^{3}H^{3}He^{4}He$ calculated We used wave functions of $^{2}H,^{5}H,^{5}He,^{4}He$ calculated the **Norfolk interactions NVIa+3N**** and **NVIb+3N**** *χEFT* 2 *H*, ³ *H*, ³ *He*, ⁴ *He*

> *c*, *κ*
 c, *κ* | *x* | *D. Wixixoso V. Q. | Ctoko D. Cobioville, Dbyse Doy Q.E4 (400E).00 E4:* *R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, **Phys. Rev. C 51 (1995) 38–51;** R. B. Wiringa et al., **Phys. Rev. Lett. 74 (1995) 4396–4399**

Matteo Rinaldi 40 Poincarè covariance et al physical preserved and the successive present of all physical **M.Viviani et al., **Phys. Rev. C 107 (1) (2023) 014314;** M. Piarulli et al.,**Phys. Rev. Lett. 120 (5) (2018) 052503;** M. Piarulli, S. Pastore, R. B. Wiringa, S. Brusilow, R. Lim,**Phys. Rev. C 107 (1) (2023) 014314**

$\rho(\epsilon)_{LF} < tT; \alpha, \epsilon; JJ_z; \tau\sigma', \tilde{\kappa} \,|\, \Psi_{JM}; \mathbf{S}, T_A T_{Az} > < \Psi_{JM}; \mathbf{S}, T_A T_{Az}|_{LF} tT; \alpha, \epsilon; JJ_z; \tau\sigma, \tilde{\kappa} >_{LF}$

Nuclear SFs and EMC ratio

To calculate the EMC ratio $R_{EMC}^A(x) = \frac{P_2(x)}{F_d(x)}$ for any nucleus A, we need the nuclear SFs. $F_2^A(x)$ $F_2^d(x)$

Within our approach we have:

*ξ = longitudinal momentum fraction carried by a nucleon in the nucleus

$$
F_2^N\left(\frac{mx}{\xi M_A}\right) f_A^N(\xi)
$$

 $A = \int_{\Omega} d\xi [Zf_1^p(\xi) + (A - Z)f^n(\xi)]$: Baryon number SR; 0 $d\xi[\text{Zf}_1^p(\xi) + (A - \text{Z})f^n(\xi)]$ 1

 $d\xi \xi f_1^N(\xi)$: Momentum SR (MSR) $1 = Z < \xi >_{p} + (Z - N) < \xi >_{n}; < \xi >_{N} =$

Since our approach fulfill both macro-locality and Poincaré covariance the LC momentum distribution satisfies 2 essential sum rules at the same time (): 1

0

Matteo Rinaldi 41 Matteo Rinaldi 41

Nuclear SFs and EMC ratio

To calculate the EMC ratio $R_{EMC}^A(x) = \frac{P_2(x)}{F_d(x)}$ for any nucleus A, we need the nuclear SFs. $F_2^A(x)$ $F_2^d(x)$

Within our approach we have:

Unpolarized LF spectral function: $P^N(\tilde{\kappa}, \epsilon) =$ 1 $2j + 1$ ∠ ℳ $P^N_{\sigma\sigma}(\tilde{\kappa}, \epsilon, \mathbf{S}, \mathscr{M})$

1) in the Bjorken limit we have the LCMD: $f_1^N(\xi) = \sum d\varepsilon$

$$
F_2^N\left(\frac{mx}{\xi M_A}\right) f_A^N(\xi)
$$

*ξ = longitudinal momentum fraction carried by a nucleon in the nucleus

 $A = \int_{\Omega} d\xi [Zf_1^p(\xi) + (A - Z)f^n(\xi)]$: Baryon number SR; 1 0 $d\xi[\text{Zf}_1^p(\xi) + (A - \text{Z})f^n(\xi)]$ 1

 $d\xi \xi f_1^N(\xi)$: Momentum SR (MSR) $1 = Z < \xi > p + (Z - N) < \xi > n; \quad \xi > N =$

$$
\oint d\epsilon \int \frac{d\kappa_{\perp}}{(2\pi)^3} \frac{1}{2\kappa^+} P^N(\tilde{\kappa}, \epsilon) \frac{E_s}{1 - \xi}
$$

Since our approach fulfill both macro-locality and Poincaré covariance the LC momentum distribution satisfies 2 essential sum rules at the same time ():

0

Nuclear SFs and EMC ratio

To calculate the EMC ratio $R_{EMC}^A(x) = \frac{P_2(x)}{F_d(x)}$ for any nucleus A, we need the nuclear SFs. $F_2^A(x)$ $F_2^d(x)$

Within our approach we have:

1) in the Bjorken limit we have the LCMD: $f_1^N(\xi) = \sum d\varepsilon$

$$
F_2^N\left(\frac{mx}{\xi M_A}\right) f_A^N(\xi)
$$

*ξ = longitudinal momentum fraction carried by a nucleon in the nucleus

 $A = \int_{\Omega} d\xi [Zf_1^p(\xi) + (A - Z)f^n(\xi)]$: Baryon number SR; 1 $\boldsymbol{0}$ $d\xi[Zf_1^p(\xi) + (A - Z)f^n(\xi)]$ 1

$$
\oint d\varepsilon \int \frac{d\kappa_{\perp}}{(2\pi)^3} \frac{1}{2\kappa^+} P^N(\tilde{\kappa}, \epsilon) \frac{E_s}{1-\xi} \qquad \text{Unpolarized LF spectral function:}
$$

$$
\mathbf{R}_{i}^{\mathbf{r}}
$$

$\frac{1}{1}^{N}(\xi)$: Momentum SR (MSR)

Matteo Rinaldi 43

1

ℳ

Since our approach fulfill both macro-locality and Poincaré covariance the LC momentum distribution satisfies 2 essential sum rules at the same time:

$$
1 = Z < \xi >_{p} + (Z - N) < \xi >_{n}; < \xi >_{N} = \int_{0} d\xi \xi f_{1}^{N}
$$

Nuclear SFs and EMC ratio

To calculate the EMC ratio $R_{EMC}^A(x) = \frac{P_2(x)}{F_d(x)}$ for any nucleus A, we need the nuclear SFs. $F_2^A(x)$ $F_2^d(x)$

Within our approach we have:

Unpolarized LF spectral function: $P^N(\tilde{\kappa}, \epsilon) =$ 1 $2j + 1$ ∠ ℳ $P^N_{\sigma\sigma}(\tilde{\kappa}, \epsilon, \mathbf{S}, \mathscr{M})$

1) in the Bjorken limit we have the LCMD: $f_1^N(\xi) = \sum d\varepsilon$

$$
F_2^N\left(\frac{mx}{\xi M_A}\right) f_A^N(\xi)
$$

*ξ = longitudinal momentum fraction carried by a nucleon in the nucleus

$$
\oint d\epsilon \int \frac{d\kappa_{\perp}}{(2\pi)^3} \frac{1}{2\kappa^+} P^N(\tilde{\kappa}, \epsilon) \frac{E_s}{1 - \xi}
$$

2) The free nucleon SFs E.Pace, M.Rinaldi, G.Salmè and S. Scopetta, Phys. Scr. 95, 064008 (2020):

a) we choose a parametrization for *Fp* b) we use the MARATHON data (MARATHON Coll., Phys. Rev. Lett 128 (2022) 13,132003) for the parametrization of the ratio $\frac{2}{\sqrt{n}}$ to get $\binom{p}{2}(x)$ *Fn* 2 *Fp*

2

-
- *Fn* 2

The EMC effect for 4He

Both lines calculated with Av18/UIX Solid line: SMC parametrization of F_2^p * **Dashed line: CJ15 +TMC Parametrization of** $F_2^{p_{**}}$ **extracted from MARATHON** *Fn* 2 2 2

data

**[B. Adeva, et al., Phys. Lett. B 412 (1997) 414–424.]*

****[A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens, N. Sato, Phys. Rev. D 93 (11) (2016) 114017]**

The dependence on the choice of the **free nucleon SFs** is largely under control in the **properly EMC region**

Matteo Rinaldi 46

46

The EMC effect for 4He

Recent (ongoing) calculations

Data from:

D. Abrams, H. Albataineh, B.~S. Aljawrneh,…,et al, ``The EMC Effect of Tritium and Helium-3 from the JLab MARATHON Experiment,'' [arXiv:2410.12099 [nucl-ex]].

Some recents works…

49

Calculation of the spin dependent 3He structure functions within the Light-Front covariant approach:

F. Fornetti, E. Proietti…, M. R. et al, PRC 110 (2024), 3, L031303

Also in this case there are no free parameters and the 3He w.f. corresponding to the Av18 potential has been used

Some recents works…

Extraction of the neutron spin dependent structure from 3He data:

$$
\bar{g}_j^n(x) = \frac{1}{p_j^n} \big[g_j^3(x) - 2 p_j^p g_j^p(x) \big] ~~(j=1,2)
$$

F. Fornetti, E. Proietti…, M. R. et al, PRC 110 (2024), 3, L031303

with the effective polarizations obtained from the 3He w.f.

The 3He spin structure is makes this nucleus unique to extract the neutron distributions!

Points: extracted from 3He data using our formula

Line: M. Gluck, et al, Phys. Rev. D 63, 094005 (2001).

Conclusions

EMC of light-nuclei within a Poincaré covariant LF approach

- We developed a rigorous formalism for the calculation of nuclear SFs (also for TMDs) involving only nucleonic DOF with the conventional nuclear physics
- For ³He we obtain results in agreement with experimental data for the EMC effect. Useful analysis for planned experiments in future facilities
- For the deviations from experimental data could be ascribed to genuine QCD effects: our results provide a reliable baseline to study exotic phenomena

- D Inclusion of the fully Poincaré relativistic approach to Generalized Parton Distributions D Include off-shell effects
- Matteo Rinaldi JLab at 22 GeV (LNF-INFN 2024) Application of the approach to heavier nuclei (6Li starting project) Studying Double Parton Distributions of light-nuclei (in preparation)

To do next

Results similar to³He and ⁴He

Backup slides

Solid line: Av18/UIX; Dashed-line: NVIb/UIX

Backup slides

MARATHON coll. : experimental data of the super-ratio $R^{ht}(x) = F_2^{^3He}(x)/F_2^{3H}(x)$

 ^{3}He : 2p + n; ^{3}H : n + 2p

Is possible to extract the ratio $F_2^n(x)/F_2^p(x)$ through the super-ratio

Dashed line: ratio from SMC collaboration Empty squares: MARATHON extraction Solid line: cubic and conic extractions from F_2^p SMC parametrization, fitted to MARATHON data 2

E.Pace, M.Rinaldi, G.Salmè and S.Scopetta Phys. Lett. B 839(2023) 127810

Backup slides

 $\tilde{\mathbf{k}} \equiv \{k^+, \vec{k}_\perp\}$

 \cdot $R_M(\tilde{k})$ is the Melosh rotation connecting the intrinsic LF and canonical frames, reached through different boosts from a given frame where the particle is moving

$$
D^{1/2}[R_M(\tilde{\mathbf{k}})]_{\sigma'\sigma} = \chi_{\sigma'}^{\dagger} \frac{m + k^{+} - i\sigma \cdot (\hat{z} \times \mathbf{k}_{\perp})}{\sqrt{(m + k^{+})^2 + |\mathbf{k}_{\perp}|^2}} \chi_{\sigma} = L_{\mathsf{F}} \langle \tilde{\mathbf{k}}; s\sigma' | \mathbf{k}; s\sigma \rangle_{c}
$$

two-dimensional spinor

N.B. If $|{\bf k}_{\perp}| << k^+, m \longrightarrow D_{\sigma'\sigma} \simeq I_{\sigma'\sigma}$

Sombed the CG machinery in the LFHD one needs unitary operators, the so-called Melosh rotations that relate the LF spin wave function and the canonical one. For a particle of spin (1/2) with LF momentum

$$
|{\bf k};\frac{1}{2},\sigma\rangle_c=\sum_{\sigma'}\;{\cal D}^{1/2}_{\sigma',\sigma}(R_M(\tilde{\bf k}))\;|\tilde{\bf k};\frac{1}{2},\sigma'\rangle_{LF}
$$

Wigner rotation for the J=1/2 case

In Instant form (initial hyperplane t=0), one can couple spins and orbital angular momenta via Clebsch-Gordan (CG) coefficients. In this form the three rotation generators are independent of the the interaction.

Backup slides

Numerical results A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmè and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204)

Matteo Rinaldi JLab at 22 GeV (LNF-INFN 2024)

Backup slides

Absolute value of the nucleon longitudinal-polarization distribution, $g_{1\mathcal{T}}^{\mathcal{T}}(x,|\mathbf{p}_{\perp}|^2)$, in a transversely polarized ³He.

Absolute value of the nucleon transverse-polarization distribution, $h_{1L}^{\perp \tau}(x,|\mathbf{p}_{\perp}|^2)$ in a longitudinally polarized ³He.

Numerical results A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmè and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204)

Backup slides Exercise, M. Rinddi, G. Salmè and S. Scopetta, Phys. Sor. 95, 064008 (2020)
\n
$$
W_{A}^{s,\mu\nu} = \sum_{N} \sum_{\sigma} \oint dc \int \frac{dx_{\perp}dx^{+}}{2(2\pi)^{3}\kappa^{+}} \frac{1}{\xi} \frac{P^{N}(\tilde{\kappa}, c)}{P^{N}(\tilde{\kappa}, c)} \frac{W_{N,\sigma}^{s,\mu\nu}(p, q)}{W_{N,\sigma}^{s,\mu\nu}(p, q)}
$$
\n
$$
W_{A}^{s,\mu\nu}
$$
\nis parametrized by the SFs $F_{2}^{A}(x)$ and $F_{1}^{A}(x)$:
\n
$$
F_{2}^{N}(\tilde{\kappa}, \epsilon) = \frac{1}{2^{j}+1} \sum_{\alpha} P_{\alpha\alpha}^{N}(\tilde{\kappa}, \epsilon, S, \mathcal{M})
$$
\n
$$
F_{2}^{A}(x) = -\frac{1}{2} x g_{\mu\nu} W_{A}^{s,\mu\nu} = \sum_{N} \sum_{\sigma} \int de \int \frac{dx_{\perp}}{(2\pi)^{3}} \frac{dx^{+}}{2\kappa^{+}} P^{N}(\tilde{\kappa}, \epsilon) F_{2}^{N}(z)
$$
\n
$$
F_{2}^{N}(\tilde{\kappa}, \epsilon) F_{2}^{N}(z)
$$
\n
$$
F_{2}^{A}(\tilde{\kappa}, \epsilon) F_{2}^{A}(\tilde{\kappa}, \epsilon) F_{2}^{A}(\tilde{\kappa}, \epsilon) F_{2}^{A}(\tilde{\kappa}, \epsilon) F_{2}^{A}(\tilde{\kappa}, \epsilon) F_{2}^{A}(\tilde{\kappa}, \
$$

Backup slides

(LCMD) instead of the **LF spectral function *** $\int d\epsilon \int d\kappa^{+} = \int d\kappa^{+} \int d\epsilon$

dκ[⊥] $(2\pi)^3$ *dκ*⁺ 2*κ*⁺ $P^N(\tilde\kappa,\epsilon)F_2^N$ $2^{2N}(z)$

In the Bjorken limit $\int d\epsilon \int d\kappa^+ = \int d\kappa^+ \int d\epsilon$ so we can use the **light-cone momentum distribution**

$$
F_2^A(x) = -\frac{1}{2}xg_{\mu\nu}W_A^{s,\mu\nu} = \sum_N \sum_{\sigma} d\epsilon \int_{\sigma}^{\alpha} \frac{d\epsilon}{2}
$$

$$
\text{LCMD: } f_1^N(\xi) = \sum \limits_{j=1}^n d\varepsilon \int \frac{d\kappa_1}{(2\pi)^3} \frac{1}{2\kappa^+} P^N(\tilde{\kappa}, \varepsilon) \frac{E_s}{1 - \xi} = \int d\mathbf{k}_\perp n^n(\xi, \mathbf{k}_\perp)
$$

LF momentum distribution:
\n
$$
n^{N}(\xi, \mathbf{k}_{\perp}) = \frac{1}{2\pi} \int_{i=2}^{A-1} [d\mathbf{k}_{i}] \underbrace{|d\mathbf{k}_{z}|}_{i=2} \underbrace{|d^{N}(\mathbf{k}, \mathbf{k}_{2}, ..., \mathbf{k}_{A-1})}_{\text{Determine covaria}}]
$$
\n\n
$$
Mattice Rinaldi
$$
\n\n**W**

Squared nuclear wave function. **Thanks to the BT construction, one is allowed to use the NR one**

Determinant of the Jacobian matrix. **LF boost: effect of a Poincaré covariance approach**

at 22 GeV (LNF-INFN 2024)

***** A. Del Dotto, E.Pace, G. Salmè and S.Scopetta, **Phys. Rev. C 95,014001 (2017)**

- The tails of the distributions are generated by the **short range correlations (SRC)** induced by the potentials (i.e the high-momentum content of the 1-body momentum distribution)
- The tails of the LC momentum distribution calculated by the Av18/UIX potential is larger than the ones obtained by the $χ$ EFT potentials for both 4He and deuteron 4 *He*

LC momentum distribution for 4He (peaked at 0.25) and deuteron (peaked at

Backup slides

$$
W_A^{a,\mu\nu} = \sum_N \sum_{\sigma} \sum_{\sigma} d\epsilon \int \frac{d\kappa d\kappa^+}{2(2\pi)^3 \kappa^+} \frac{1}{\xi} P_{\sigma}^N(\tilde{\kappa}, \epsilon)
$$

 $W_A^{a,\mu\nu}$ is parametrized by the the **spin-dependent SFs (SSFs)** $g_1^A(x, Q^2)$ and

For the **polarized DIS** we need to calculate the **antysimmetric** part of the **hadronic tensor**:

dent SFs (SSFs)
$$
g_1^A(x, Q^2)
$$
 and $g_2^A(x, Q^2)$

As for the unpolarized case, in the **Bjorken limit** we can write a **convolution formula** for the **SSFs**:

$$
g_j^A(x) = \sum_N \int_{\xi_m}^1 d\xi \left[g_1^N(z) l_j^N(\xi) + g_2^N(z) h_j^N(\xi) \right], j = 1, 2
$$

Backup slides

Matteo Rinaldi JLab at 22 GeV (LNF-INFN 2024) **[2]** M. Glück, E. Reya, M. Stratmann, and W. Vogelsang, **Phys. Rev. D 63, 094005 (2001) [3]** S. Wandzura and F. Wilczek, **Phys. Lett. B 72, 195 (1977)**

$$
g_2^N(x) = -g_1^N(x) + \int dy \frac{g_1^N(y)}{y}
$$

$$
g_j^A(x) = \sum_N \int_{\xi_m}^1 d\xi \left[g_1^N(z) l_j^N(\xi) + g_2^N(z) h_j^N(\xi) \right], j =
$$

The spin-dependent $\mathsf{LCMD}\; l_j^N(\xi)$ and $h_j^N(\xi)$ are related to the transverse momentum-We used the TMDs for ${}^{3}He$ calculated with the Av18 potential in Ref. [1] **GRSV** parametrization [2] for the $g_1^N(x)$ SSF $g_2^N(x)$ extracted by $g_1^N(x)$ with the **Wandzura-Wilczek** formula [3]:

-
-
-

- **[1]** R.Alessandro. A.Del Dotto. E.Pace. G.Perna. G.Salmè and S.Scopetta. Phys.Rev.C 104(2021) 6.065204
	-

D ne can **approximate** this equation using that $l_j^N(\xi), h_j^N(\xi)$ are **peaked** around $\xi \simeq 1/A$ and so

Where the **effective polarization** p^N_j are **integral** of the TMDs $\Delta f(\xi, k_\perp)$ and $\Delta_T' f(\xi, k_\perp)^\star$

 $d\mathbf{k}_{\perp}\Delta'_{T}f(\xi,k_{\perp})$

Backup slides

$$
g_j^A(x) = \sum_{N} \int_{\xi_m}^{1} d\xi \left[g_1^N(z) l_j^N(\xi) + g_2^N(z) h_j^N(\xi) \right]
$$

$$
g_j^{\bar{n}}(x) = \frac{1}{p_j^n} \left[g_j^{3He}(x) - 2p_j^P g_j^P(x) \right]
$$

We compared our extraction of the **neutron SSFS** with the one of the **GRSV parametrization** and with the **NR extraction**, obtained through the effective polarizations calculated from a NR

$$
p_1^N = \int_0^1 d\xi \int d\mathbf{k}_\perp \Delta f(\xi, k_\perp) \text{ and } p_2^N = \int_0^1 d\xi
$$