### **Pseudoscalar Mesons and Emergent Mass**

## Khépani Raya Montaño



Khépani Raya · Adnan Bashir · Daniele Binosi · Craig D. Roberts · José Rodríguez-Quintero

**Pseudoscalar Mesons and Emergent Mass** 

https://doi.org/10.1007/s00601-024-01924-2

Eniversidad de Huelva

Science at the Luminosity Frontier: JLab at 22 GeV Frascati, Italy. December 9-13, 2024

### **QCD: Emergent Phenomena**

- QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).
- Quarks and gluons not *isolated* in nature.
- → Formation of colorless bound states: "<u>Hadrons</u>"
- 1-fm scale size of hadrons?



 Emergence of hadron masses (EHM) from QCD dynamics





#### **QCD: Emergent Phenomena**

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).





$$\mathcal{L}_{\text{QCD}} = \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu},$$
$$D_\mu = \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu,$$
$$G^a_{\mu\nu} = \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - \underline{g} f^{abc} A^b_\mu A^c_\nu,$$

 Emergence of hadron masses (EHM) from QCD dynamics



### **QCD: Emergent Phenomena**

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

#### Can we trace them down to fundamental d.o.f?



 $\begin{aligned} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - \underline{g} f^{abc} A^b_\mu A^c_\nu, \end{aligned}$ 

 Emergence of hadron masses (EHM) from QCD dynamics



Gluon and quark running masses

#### Mass Budgets

 $M_{u/d} \approx 0.3 \,\mathrm{GeV}$ 

➤ What is the origin of EHM?

... its connection with *e.g.* **confinement** and **DCSB**?

- Most of the mass in the visible universe is contained within nucleons
  - Which remain pretty massive whether there is Higgs mechanism or not...





Proton and rho meson mass budgets are practically identical

#### Mass Budgets

 $m_s/m_u \sim 20$  $f_K/f_\pi \sim M_s/M_u \sim 1.2$ 

The lightest hadrons in Nature, pions and kaons, follow an opposite pattern.

> $m_{\pi} = 0.14 \,\mathrm{GeV} \neq M_u + M_d$  $m_K = 0.49 \,\mathrm{GeV} \neq M_u + M_s$

- In fact, the absence of Higgs mechanism would render these states massless.
  - → And structurally alike.
- Both are quark-antiquark boundstates and NG bosons
  - Their mere existence is connected with mass generation in the SM



#### EHM HE EHM Both are guark-antiguark boundstates and NG bosons Their mere existence is connected with mass generation in the SM EHM+HE FHM+HB **Pion** mass budget Kaon mass budget $\blacktriangleright$ This is also true for the $\eta$ meson, HB EHM+HB but not for its partner, $\eta'$ . $\rightarrow$ The U<sub>A</sub>(1) anomaly, another manifestation of EHM, sets it apart from the **NG-boson** family • Yet, the $\eta - \eta'$ system have tightly EHM+HB intertwined properties $\eta$ mass budget η' mass budget

Mass **Budgets** 

 $m_s/m_u \sim 20$ 

 $f_K/f_\pi \sim M_s/M_u \sim 1.2$ 

The examination of all pseudoscalars is crucial in elucidating the role of the mass generation mechanisms on the structural properties.

An so the emergent features of the strong interactions.

Mass **Budgets** 

(confinement, mass generation)

- Light pseudoscalars hold a special role due to their link with symmetries and anomalies in the Standard Model.
- Modern facilities are set to scrutinize their properties at unprecedented depth.

Accardi:2023chb Arrington:2021biu Chen:2020ijn



■ HB ■ EHM+HB

EHM

% mass fraction

0%

 $m_s/m_u \sim 20$  $f_K/f_\pi \sim M_s/M_u \sim 1.2$ 

# Continuum Schwinger Methods (CSM)





## **Dyson-Schwinger Equations**

- Equations of motion of a quantum field theory
- Relate Green functions with higher-order Green functions
  - Infinite tower of coupled equations.
    - Systematic truncation required
- No assumptions on the coupling for their derivation.
  - Capture both perturbative and non-perturbative facets of QCD
- Not limited to a certain domain of current quark masses
- Maintain a traceable connection to QCD.



C.D. Robert and A.G. Williams, Prog.Part.Nucl.Phys. 33 (1994) 477-575 G. Eichmann, H. Sanchis-Alipus *et al*. Prog.Part.Nucl.Phys. 91 (2016) 1-100

#### **DSE-BSE approach**



Relates the quark propagator with QGV and gluon propagator.



#### **Meson BSE**

- Contains all interactions between the valence quark and antiquark
- Any <u>sensible truncation</u> must preserve the Goldstone's Theorem, whose most fundamental expression is captured in:

"Pions exists, if and only if, DCSB occurs."

$$f_{\pi}E_{\pi}(k; P = 0) = B(k^{2})$$

$$\downarrow$$
Leading BSA "*Mass* Function"

# Valence-quark distribution amplitudes (DAs)

$$f_{\mathbf{P}}\varphi_{\mathbf{P}}^{q}(x;\zeta) = \operatorname{tr}_{\mathrm{CD}} \int_{dk}^{\Lambda} \delta_{n,P}^{x}(k)\gamma_{5}\gamma \cdot n(k;P)\chi_{\mathbf{P}}(k_{-};P)$$

Light-front momentum fraction

Expressed in terms of **BSWF** 

- 1-dimensional projection of the light-front wavefunction.
- Clear probe of EHM, related with hard exclusive processes, etc.

#### π-K DAs



#### 'Heavy' mesons DAs

' In systems with heavy quarks, the **DAs** become **narrow**.



- Unlike the Kaon, heavy-light systems DAs are markedly skewed
  - + The peaks located at:  $x_{\max}^{\pi,\,K,\,D,\,B} = 0.5,\,0.4,\,0.18,\,0.1$

#### **Drawing boundaries**

 Systems with ss-bar components draw the line between strong and weak mass generation being dominant.





## Electromagnetic Elastic Form Factors (EFFs)

$$P_{\mu}F_{\mathbf{P}}^{q}(Q^{2}) = \operatorname{tr}_{\mathrm{CD}} \int_{dk}^{\Lambda} \chi_{\mu}^{q}(k+p_{o},k+p_{i})\Gamma_{\mathbf{P}}(k_{i};p_{i}) S_{h}(k) \Gamma_{\mathbf{P}}(k_{o};-p_{o})$$
  
All can be written in terms of **propagators** and **vertices**

- Gives information on momentum/charge distribution.
- **Pion EFF** highly relevant for contemporary physics.

 $\Gamma_{\pi}(k_i; p_i)$ 

S(k)



#### **Elastic Form Factors**



- $w_{\mathbf{P}} = \frac{1}{3} \int_{0}^{1} dx \, \frac{1}{x} \, \varphi_{\mathbf{P}}(x; Q^2) \longleftarrow \mathbf{PDA} \longrightarrow$
- The asymptotic behavior is weighted by *f<sub>P</sub>*, a measure of **EHM**.
  - Factorization/scaling violations are proof of the validity of **QCD itself.**

# **Two-photon Transition Form Factors (TFFs)** $\mathcal{T}_{\mu\nu}(k_{1},k_{2}) = \frac{e^{2}}{4\pi^{2}}\epsilon_{\mu\nu\alpha\beta}k_{1\alpha}k_{2\beta}G_{P}(k_{1}^{2},k_{2}^{2},k_{1}\cdot k_{2})$ $\mathcal{T}_{\mu\nu}(k_{1},k_{2}) = e^{2}\mathcal{Q}_{P}^{2}\mathrm{tr}\int_{l}i\chi_{\mu}^{q}(l,l_{1})\Gamma_{P}(l_{1},l_{2})S(l_{2})i\Gamma_{\nu}^{q}(l_{2},l)$

 $M_5$ 

 $S(l_2)$ 

 ${\cal Q}\Gamma_{\nu}(l_2,l)$ 

All can be expressed in terms of **propagators** and **vertices** 

- Gives information on momentum/charge distribution.
- Pion TFF highly relevant for contemporary physics.



#### **Two-photon TFFs**



$$Q^2 \gg m_n^2$$

$$Q^2 G^q_{\mathbf{P}}(Q^2) \stackrel{q}{\approx} \stackrel{w_{p}}{\approx} 12\pi^2 f^q_{\mathbf{P}} \, \mathbf{e}_q^2 \, \mathbf{w}_q(Q^2)$$

$$w_{\mathbf{P}} = \frac{1}{3} \int_0^1 dx \, \frac{1}{x} \, \varphi_{\mathbf{P}}(x; Q^2) \, \longleftarrow \, \mathbf{PDA} \, \longrightarrow \,$$

- The asymptotic behavior is weighted by *f<sub>P</sub>*, a measure of EHM.
- Factorization/scaling violations are proof of the validity of QCD itself.

#### **Two-photon TFFs**



• In the **opposing** end, the **chiral** *anomaly* entails:

$$2f^0_{\mathbf{P}}G^0_{\mathbf{P}^0}(Q^2=0)=1$$

- Thus EHM (via DCSB) sets the infrared scale as well.
- Any deviations from this result are a measure of EHM+HB interplay.

#### **Pion TFFs**

• The CSM prediction satisfies the Abelian anomaly,  $2f_{\pi}^{0}G_{\pi^{0}}^{0}(Q^{2}=0)=1$ 

... while faithfully recovering the **asymptotic limit**.

• A dilated+concave DA, at the hadronic scale, connects both pion EFF and TFF.



Precise agreement with <u>all</u> experimental data; except for <u>Babar</u> at large Q<sup>2</sup>.





KR, M. Ding *et al.* Phys.Rev.D 95 (2017) 7, 074014



- The  $\eta_c$  prediction shows agreement with available experimental data.
- In both  $\eta_c$  and  $\eta_b$  cases, there is compatibility with nrQCD.

 $\eta_c - \eta_b$  TFFs

In addressing the  $\eta$ – $\eta'$  properties, interaction kernels need to consider the **non-Abelian** anomaly. Bhagwat:2007ha

η–η**′ TFFs** 

۶

$$[\Gamma_{\eta,\eta'}(P)]_{l_1l_2} = \int_q [\mathcal{K}_{\mathrm{L}} + \mathcal{K}_N]_{l_1l_2}^{l_1'l_2'}(P)[\chi_{\eta,\eta'}(q;P)]_{l_1'l_2'}$$
  
Ladder kernel Anomaly kernel







 Masses, decay widths and TFFs are sensitive to the effects of the anomalies.

| Meson                                     | This Work                      | Experiment [5] |
|-------------------------------------------|--------------------------------|----------------|
| $\pi^0$                                   | 0.2753(31)                     | 0.2725(29)     |
| $\eta$                                    | 0.2562(170)                    | 0.2736(60)     |
| $\eta^\prime$                             | 0.3495(60)                     | 0.3412(76)     |
| $\eta_c$                                  | 0.0705(40)                     | 0.0678(30)     |
| $\eta_b$                                  | 0.0038(2)                      |                |
| $F_M(0,0) = \sqrt{\frac{4\mathrm{I}}{2}}$ | $\frac{\gamma\gamma\gamma}{M}$ | Raya:2019di    |

 $\int \pi \alpha_{em}^2 m_M^3$ 





The produced TFFs meet the expectations of the chiral anomaly

 Meson This Work
 Experiment [5]

 Experiment [5]
 Experiment [5]

|                                                       | $4\Gamma_M^{\gamma\gamma}$     | $\pi^0$ | 0.2753(31)  | 0.2725 ( | (29) |
|-------------------------------------------------------|--------------------------------|---------|-------------|----------|------|
| $F_M(0,0) = \sqrt{\frac{M}{\pi \alpha_{em}^2 m_M^3}}$ | $\frac{M}{\sqrt{2} m_{1}^{3}}$ | η       | 0.2562(170) | 0.2736 ( | (60) |
|                                                       | em m M                         | $\eta'$ | 0.3495(60)  | 0.3412 ( | (76) |

Are plainly compatible with the experimental data, in both low and large-Q<sup>2</sup> regions.



Domain of **interest** for **muon g-2** HLbL contributions !

$$\begin{aligned} a_{\mu}^{\pi^{0}-\text{pole}} &= (6.14 \pm 0.21) \times 10^{-10} \\ a_{\mu}^{\eta-\text{pole}} &= (1.47 \pm 0.19) \times 10^{-10} \\ a_{\mu}^{\eta'-\text{pole}} &= (1.36 \pm 0.08) \times 10^{-10} \\ \end{aligned}$$
Raya:2019dnh

> TFFs also feature the trends expected from pQCD.

#### **Two-photon TFFs**

- > **All** two-photon **TFFs** involving ground-state neutral pseudoscalars are within reach:
  - Invariably, agreement with the experimental data is found, with the exception of the large-Q<sup>2</sup> Babar data for the pion.
- Clearly, the shape of M(k) echoes in TFFs and DAs.

Exposing the **impact** of the **mass generation** mechanisms



## **Final Highlights**



## **Final Highlights**

- The emergent phenomena in QCD produces unique outcomes:
  - The degrees-of-freedom are not directly accessible, we get to observe hadrons (confinement).
  - Through their own mechanisms, **dynamical mass generation** is present in both **matter** and **gauge** sectors of QCD; the later yielding a running **coupling** that saturates at infrared momenta.
- > Pseudoscalar mesons are an ideal platform to inquire on these facets of QCD:
  - Their mere existence and properties are connected with the mass generation in the Standard Model and, potentially, confinement.
     A x = 0.0
  - Modern facilities are capable to address the properties of NG bosons and it's connection with QCD's emergent phenomena.
- Theory has evolved to the point where all sorts of parton distributions of <u>pseudoscalar</u> mesons are within reach.
  - TFFs are valuable as they encode symmetries, their breaking, scaling violations, and the transition between soft and hard scales.







phen. [36, 81, 82]

0.090(13)

-0.093(28) 0.073(14) 0.094(8)

 $f^s = 0.138 \,\mathrm{GeV} = 1.49 \,f_\pi,$ 

#### **Quark-photon Vertex**

- The **QPV** should fulfill (at least) the following:
  - Longitudinal WGTI
  - Free of kinematic singularities
  - Recover the point-particle limit
  - Produce the abelian anomaly
- Should expedite the computation of the TFFs

The transverse pieces makes it possible to recover the Abelian anomaly, via:

$$s = 1 + s_0 \exp(-\mathcal{E}_{\pi}/M_E)$$
  
 $\mathcal{E}_{\pi} = Q/2$   
 $M_E = \{p | p^2 = M^2(p^2), p > 0\}$ 

> We adopt the following **Ansatz**:

$$\begin{split} \chi_{\mu}(k_{f},k_{i}) =& \gamma_{\mu}\Delta_{k^{2}\sigma_{V}} \\ &+ [s\,\gamma\cdot k_{f}\gamma_{\mu}\gamma\cdot k_{i}+\bar{s}\gamma\cdot k_{i}\gamma_{\mu}\gamma\cdot k_{f}]\Delta_{\sigma_{V}} \\ &+ [s\,(\gamma\cdot k_{f}\gamma_{\mu}+\gamma_{\mu}\gamma\cdot k_{i}) \\ &+ \bar{s}\,(\gamma\cdot k_{i}\gamma_{\mu}+\gamma_{\mu}\gamma\cdot k_{f})]\,i\Delta_{\sigma_{S}}\,, \end{split}$$

$$\succ$$
 Where:  $\Delta_F = [F(k_f^2) - F(k_i^2)]/[k_f^2 - k_i^2]$ 

The value s<sub>0</sub> is fixed so that the TFF is properly normalized in line with the predicted decay width:

$$\Gamma_{\eta_{c,b}}^{\gamma\gamma} = \frac{8\pi\alpha_{em}^{2}\mathbf{c}_{\eta_{c,b}}^{4}f_{\eta_{c,b}}^{2}}{m_{\eta_{c,b}}} \\ \Gamma_{\eta,\eta'}^{\gamma\gamma} = \frac{9\alpha_{em}^{2}m_{\eta,\eta'}^{3}}{64\pi^{3}} \left[c_{l}\frac{f_{\eta,\eta'}^{l}}{(f^{l})^{2}} + c_{s}\frac{f_{\eta,\eta'}^{s}}{(f^{s})^{2}}\right]^{2} F_{M}(0,0) = \sqrt{\frac{4\Gamma_{M}^{\gamma\gamma}}{\pi\alpha_{em}^{2}m_{M}^{3}}}$$