Study Light Sea with SIDIS @JLab22 in SoLID and Hall C

Workshop on Science at Luminosity Frontier: JLab at 22 GeV, 12/9-14, 2024 Jian-ping Chen, Jefferson Lab

In Collaboration with Dave Gaskell, Ching Him Leung, Arun Tadepalli and Ye Tian

- 1. Introduction: Parton Distributions and Light Sea
- 2. Unpolarized Light Sea: Projections for Hall C @ JLab22
- Polarized Light Sea: Projections for SoLID @ JLab22 also Projections on Pt Dependence of Longitudinal Asymmetries (Helicity TMDs)
- 4. Summary

1. Introduction

Unpolarized Structure Functions

Unpolarized Parton Distrobutions

PDG

SEAQUEST Results: Unpolarized Light Sea

- SeaQuest results show that nature prefers dbar over ubar in the proton sea
- Non-perturbative mechanism other than gluon splitting must be the source
- Trend consistent with meson baryon model and statistical parton distribution functions

Arun Tadepalli

2ë

Dove et. al. Nature 590, 561 – 565 (2021)

 $2.5^{pp^{-}(x_{beam} >> x_{targ})}$

 $u(x_{targ})$

Polarized Structure functions

Soll Jefferson Lab 7

RHIC-Spin W production → Polarized Light Sea

Ralf Seidl @ Diffraction2024

Sea quark helicites

- RHIC data at boundary of DSSV/NNPDFpol1.1 uncertainty bands
- Reweighted NNPDFpol1.1 and DSSV14 fits shows substantial polarized light sea asymmetry
- opposite sign to most pion cloud models (where polarized and unpolarized light sea asymmetries have same sign)

9/12, Diffraction + Low-x

Sto

Jefferson Lab

8

Ralf Seidl: RHIC Spin

2. Unpolarized Light Sea

Projections for Hall C @ JLab22

Hall C @ JLab22 SIDIS Phase Space

Dave Gaskell

Hall C @ JLab22 SIDIS Projection

Dave Gaskell

30 days of running at 50 uA on 10 cm LH2 and LD2 targets Assume 200k events for π + and π - from LH2, 400k events from π + and π - from LD2

 \rightarrow Error bars are statistics only – need excellent point-to-point systematics when combining π + and π -

Study Experimental Systematics

Dave Gaskell

Including **only** the systematics related to LH2 and LD2 target thicknesses Other systematics: study to be continued

3. Polarized Light Sea

Projections for SoLID @ JLab22 and Projections on Helicity TMDs

COMPASS: Longitudinal Polarized SIDIS

Barbara Badelek@ Diffraction2024

Semi-inclusive asymmetries and parton distributions

NLO parameterisation of DSSV (without these results) describes the data well.
 Barbara Badelek (University of Warsaw)
 Spin programme of COMPASS
 Diffraction and Low-x 2024
 11/28

SoLID@JLab: QCD Intensity Frontier

- Nucleon spin, proton mass, beyond standard model experiments require precision measurements of small cross sections and asymmetries, combined with multiple particle detection
- critical need for high luminosity (10³⁷-10³⁹ cm⁻²s⁻¹) and large acceptance
- Science reach:
 - Precision 3D imaging of the nucleon in the valence quark region
 - Beyond Standard Model searches
 - Exploring the origin of the proton mass and gluonic force in the non-perturbative regime.

Fraction of nucleon momentum

SoLID @ JLab22 SIDIS Polarized Asymmetries π + on n

• Statistical uncertainty only (systematics to be studied in the next a few months)

Ching Him Leung

16

- 100 PAC days; Luminosity = 10^{36} cm²s⁻¹, acceptance form EvneSoLID simulation
- Event generator (LO), PDF: CJ15lo; FF: DSSFFlo
- $\delta ALL = (1/fn * Pb * Pt * Pn) * SQRT (Nacc)$
- Pb=85% beam polarization; Pt=60% pol ³He target polarization (Pt=70% for pol proton target)
- Pn=86% neutron polarization in ³He; neglecting the proton part
- fn is the dilution factor-fraction of neutron cross section relative to the nuclear cross section
- Summing over Pt and z ranges: 0 < Pt < 1GeV, 0.2 < z < 0.6

SIDIS π^+

SoLID @ JLab22 SIDIS Polarized Asymmetries: π/K on n

SoLID @ JLab22 SIDIS Polarized Asymmetries: π/K on p

SoLID @ JLab22 SIDIS Polarized u/d PDFs

LO extraction (assuming x-z factorization) $A_{LL}(x,Q^2,z) = \frac{\sum_f e_f^2 \Delta q_f(x,Q^2) \cdot D_f^h(z,Q^2)}{\sum_f e_f^2 q_f(x,Q^2) \cdot D_f^h(z,Q^2)}$

Ching Him Leung

Using LO Fragmentation Function DSSFFLO Solving/ChiSQ fit all asymmetry data \rightarrow polarized PDFs

SoLID @ JLab22 SIDIS Polarized ubar/dbar PDFs

Ching Him Leung

p_T Dependence of Longitudinal Asymmetries from n

→ Helicity TMDs

Yi Tian

Systematic Uncertainties

- Next steps:
 - 1. evaluation of experimental systematic uncertainties
 - 2. evaluation of theoretical uncertainties: need help from theory and global fit groups.
- Experimental Systematics:

similar to SIDIS-TMD study done for 11 GeV program?

- Theoretical Systematics:
 - 1. NLO extraction
 - 2. contamination from non-current fragmentation and higher-twist effects
 - 3. contamination from vector mesons
 - 4. effect from missing high high-Pt region
 - 5. assumptions of charge symmetry and isospin symmetry in FF
 - 6. nuclear effect for neutron extraction
 - 7.?

Summary

Light sea (ubar/dbar) at intermediate x (0.1-0.5):

of great interest and in need of high precision data

- High luminosity JLab22: ideal tool to study light sea at intermediate x
- Hall C @JLab22 projections -> potential to make an impact on unpolarized light sea; need careful systematic/theoretical studies.
- SoLID @ JLab22 projections show potential to make an impact on polarized light sea; need careful systematic/theoretical studies.

Also projections on Pt dependence of longitudinal asymmetries (study helicity TMDs)

• Next steps: systematic uncertainty studies

 $\Delta s?$

Backups

Equations (leading order extraction)

$$\begin{split} \overline{\frac{d}{u}}(x) &= \frac{2(\overline{d} + \overline{u})(x)r_2 - (u + \overline{u})(x)(r_2 - r_1)}{(u + \overline{u})(x)(r_2 - r_1) + 2(\overline{d} + \overline{u})(x)} \\ t_1(x) &= \frac{Y_p^{\pi^+} + Y_p^{\pi^-}}{Y_n^{\pi^+} + Y_n^{\pi^-}} = \frac{4u(x) + d(x) + 4\overline{u}(x) + \overline{d}(x)}{4d(x) + u(x) + 4\overline{d}(x) + \overline{u}(x)} \\ t_2(x) &= \frac{Y_p^{\pi^+} - Y_p^{\pi^-}}{Y_n^{\pi^+} - Y_n^{\pi^-}} = \frac{4u(x) - d(x) - 4\overline{u}(x) + \overline{d}(x)}{4d(x) - u(x) - 4\overline{d}(x) + \overline{u}(x)} \\ r_1(x) &= \frac{4 - t_1(x)}{4t_1(x) - 1} = \frac{d_v(x) + 2\overline{d}(x)}{u_v(x) + 2\overline{u}(x)} \\ r_2(x) &= \frac{4 + t_2(x)}{4t_2(x) + 1} = \frac{d_v(x)}{u_v(x)} \end{split}$$

Projections done using this formula

Points are kinematics of suggested measurements

11 GeV

x	Q ²	W	(W') ²
0.1 5	2.0	3.5	6.52
0.2 0	2.5	3.3	5.84
0.3 0	3.5	3.0	4.90
0.4 1 <mark>8 (</mark> -	4.0 GeV	2.6	3.79
0.5	5.0	2.4	3.26
^			
x	Q ²	W	(W') ²
x 0.2 0	Q ² 4.5	W 4.4	(W ') ² 9.84
x 0.2 0 0.3 0	Q ² 4.5 6.0	W 4.4 3.9	(W') ² 9.84 7.82
x 0.2 0 0.3 0 0.4 0	Q ² 4.5 6.0 7.5	W 4.4 3.9 3.5	(W') ² 9.84 7.82 6.42

LO method assumes charge and isospin symmetry in Fragmentation Functions

$$D^{+} \equiv D_{u}^{\pi^{+}} = D_{d}^{\pi^{-}} = D_{\overline{u}}^{\pi^{-}} = D_{\overline{u}}^{\pi^{+}} = D_{\overline{d}}^{\pi^{+}}$$

$$D^{-} \equiv D_{u}^{\pi^{-}} = D_{d}^{\pi^{+}} = D_{\overline{u}}^{\pi^{+}} = D_{\overline{d}}^{\pi^{-}}$$

$$\delta_{CSV}^{f}(z) = \frac{D_{d}^{\pi^{-}} - D_{u}^{\pi^{+}}}{D_{u}^{\pi^{+}}}$$

$$\delta_{CSV}^{uf}(z) = \frac{D_{d}^{\pi^{+}} - D_{u}^{\pi^{-}}}{D_{u}^{\pi^{-}}}$$

$$Preliminary Hall C results suggest this may not hold at large x or low W$$

$$S^{(2)} = \frac{D_{d}^{\pi^{+}} - D_{u}^{\pi^{-}}}{D_{u}^{\pi^{-}}}$$

SoLID@JLab: at the QCD Intensity Frontier

SoLID will maximize the science return of the 12-GeV CEBAF upgrade by combining

Research at **SoLID** will have the *unique* capability to explore the QCD landscape while complementing the research of other key facilities

- 3D momentum imaging of a relativistic strongly interacting confined system - TMDs (<u>nucleon spin</u>)
- Superior sensitivity to the differential electro- and photo-production cross section of J/ψ near threshold (gluon field and proton mass)
- Pushing the phase space in the search of new physics and of hadronic physics

Synergizing with the pillars of EIC science (proton spin and mass) through high-luminosity valence quark tomography and precision J/ψ production near threshold

SoLID @ JLab22 SIDIS Polarized u/d PDFs

LO extraction (assuming x-z factorization) $A_{LL}(x, Q^2, z) = \frac{\sum_f e_f^2 \Delta q_f(x, Q^2) \cdot D_f^h(z, Q^2)}{\sum_f e_f^2 q_f(x, Q^2) \cdot D_f^h(z, Q^2)}$

Using LO Fragmentation Function DSSFFLO Solving/ChiSQ fit all asymmetry data \rightarrow polarized PDFs

SoLID @ JLab22 SIDIS Polarized s PDFs

p_T Dependence of Helicity TMD Distributions from Proton

