Color Transparency effects at 22 GeV

Science at the Luminosity Fronter: Jefferson Lab at 22 GeV INFN Frascati-LNF December 12, 2024

> Holly Szumila-Vance (FIU) Dipangkar Dutta (MSU) Lamiaa El Fassi (MSU)

Color transparency is a fundamental prediction of pQCD

Vanishing of final state interactions of hadrons with nuclear medium in exclusive processes at high momentum transfer

Color transparency is a fundamental prediction of pQCD

Quantum mechanics: Shorter wavelength photons are absorbed on smaller-size hadrons (squeezing)

Relativity:

Maintains this small size as it propagates out of the nucleus (*freezing*) $\gamma t_l = \frac{E}{m} t_l$

Strong force: Experience reduced attenuation in the nucleus, color screened $\sigma_{PLC} \approx \sigma_{hN} \frac{b^2}{R_h^2}$

Transparency is the probability that the struck hadron emerges from the nucleus without being deflected or absorbed

- scattering cross section
- Glauber multiple scattering
- NN Correlations and Final State Interaction (FSI) effects

Onset of CT indicates the transition to quark-gluon degrees of freedom

Onset of CT indicates where quark-gluon degrees of freedom become relevant

CT experiments

A($\boldsymbol{\gamma}, \boldsymbol{\pi}^{-}$ p): JLab A(e, e' π ⁺): JLab A(e, e' ρ^0): DESY & JLab

Extend measurements on ρ^0 in Hall B

Assumes same number of beam days at 11 and 22 GeV for comparison

Extend measurements on π^+ in Hall C

- $E_b = 13.2 \text{ GeV or } E_b = 17.6 \text{ GeV}$
- x4 rate increase from $13.2 \rightarrow 17.6 \text{ GeV}$
- Both E_b kinematics are limited to approx. max Q²=12.5 GeV² to keep t<1 GeV² (reduced FSI)
- At 17.6 GeV, run HMS at high $P_{central}$

200 beam hours total, $E_b = 17.6 \text{ GeV}$ Beam hours on each target, 3% uncertainty

	9.5	11	12.5
Н	1.5x2	7x2	13x2
D	1.5	7	13
С	2	9	16
Cu	7	37	66

~Could further confirm meson CT with J/ ψ at 22 GeV~

Extending the proton measurements in Hall C: Parallel kinematics, access higher Q²

Previous attempt at 12 GeV did not observe CT in protons. HLFQCD predicts we will see it at higher Q².

Brodsky and de Téramond, Physics 2022

Kinematics possible in current Hall C spectrometers

Region of interest at high Q^2

Extending the proton measurements in Hall C: Parallel kinematics, access higher Q²

Increasing $E_b = 13$ GeV:

 14.2 GeV² gains x3 on rate compared to previous 10.6 GeV beam

 $\vec{p} || \vec{q}$

~180 hrs beam on target, can get
2.2% stats on 14.2, 15.8, 17.4 GeV²

Left-right asymmetry in A(e,e'p) in perpendicular kinematics Bianconi, Boffi & Kharzeev, PLB 325, 294 (1994)

L-R Asymmetry is very sensitive to FSI at large P_{miss} , away from parallel kinematics ($|\theta_{pq}| > 0$)

D. Bhetuwal, et al, Phys. Rev. C 108, 025203 (2023)

Extending proton measurements in Hall C: New (high FSI) kinematics, access higher Q²

Deuterium is well-described through Generalized Eikonal Approximation (GEA)

Larger spectator momentum →

smaller distances between the production and rescattering vertices

Extending proton measurements in Hall C: New (high FSI) kinematics, access higher Q²

Measure protons from re-scattering, look for **decrease** with increasing Q²

Extending proton measurements in Hall C: New (high FSI) kinematics, access higher Q²

With 13 GeV beam, approved experiment is \sim 14 days

Farrar et al., PRL (1988) Higher Q^2 important to increase sensitivity to larger ΔM^2

Larger $\Delta M^2 \rightarrow l_h = 2p_h/\Delta M^2$ shorter PLC lifetime \rightarrow delays CT onset

Larger ΔM^2 consistent with lack of observation of weakly interacting quark-gluon plasma

Add two new Q² points at 15 and 17 GeV² with 3% uncertainty (19 days and 2 months, respectively)

P_n (normal) component of recoil proton polarization in A(e,e'p)

 $P_n = 0$ in the absence of any nuclear medium effects (FSI filter)

Dirty kinematics: large P_r

CT signature: $P_n \rightarrow 0$ with increasing Q^2

In-plane kinematics: $\cos(\beta) = n\pi$

$$\frac{d^3\sigma}{d\omega d\Omega_e d\Omega_p} = \sigma_0 [1 + P_n]$$

 $\sigma_0 = K[v_L R_L + v_T R_T + v_{TT} R_{TT} \cos 2\beta + v_{LT} R_{LT} \cos \beta]$ $P_n = \frac{K}{\sigma_0} [v_L R_L^n + v_T R_T^n + v_{TT} R_{TT}^n \cos 2\beta + v_{LT} R_{LT}^n \cos \beta]$ $K = \frac{m |\vec{p'}|}{2(2\pi)^3} \left[\frac{d\sigma}{d\Omega_e} \right]_{Mott}$

P_n (normal) component of polarization transfer

- Construct double focal plane polarimeter for SHMS to measure P_n for ²H, ¹²C, ⁶³Cu
- p(e,e'p) for self-calibration (analyzing power, A_c) and false asymmetry
- Already measured proton form factors

Statistical uncertainty:

 $\Delta P_n = \frac{\pi}{2} \left(N_0 \epsilon \right)^{-1/2}$

Where $\epsilon = A_c^2 f$ And f is the useful fraction of events in the FPP acceptance

> Using ϵ =0.003 and 13 GeV beam, scan Q² and targets: 2-10 GeV² ($\Delta P_n < 0.1$) = 200 hrs

A. Saha et al., PR 91-006, Hall A proposal.

B. Anklin H. et al., The ELFE Project, Conference Proceedings, Vol. 44, p.223 (1993)

Reaction mechanism dependent? Photoproduction!

 $\gamma n \rightarrow \pi^{-} p$ in ⁴He in Hall A (6 GeV era)

D. Dutta *et al*. PRC 68.021001 (2003)

Photoproduction in Hall D

Experiment ran in 2021 on ⁴He, ¹²C and deuterium

- Goal to study SRCs and test our assumptions
- Look for CT effects using photons

Photoproduction in Hall D at 22 GeV $\gamma p \rightarrow \rho^0 p$ Increasing the photon energy:

Photoproduction in Hall D at 22 GeV

Photon energy can be fine-tuned for reactions of interest:

- Polarization-optimization could enable better access transverse kinematics
- Rates
- Collimator
- Access J/ ψ for confirmation of meson CT

Summary

With a 22 GeV upgrade, we can:

- Extend ρ^0 and π^+ meson measurements to higher Q^2
- Extend proton studies to higher Q² and shorter PLC lifetime with increased sensitivity
- Access higher "freezing" in photoproduction
- Access other kinematics with sensitive FSIs in proton recoil polarization transfer
- Explore J/ ψ in electro- and photoproduction as confirmation of meson CT
- Explore high precision nuclear transparency measurements in general
- Consider neutron transparency studies

Thank you for your attention!