
Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions ($k < k_0$) and a hard tail φ_{π}^{hard} .

While $\varphi_{\pi}^{\ \ hard}$ can be treated in pQCD, $\varphi_{\pi}^{\ \ soft}$ cannot.

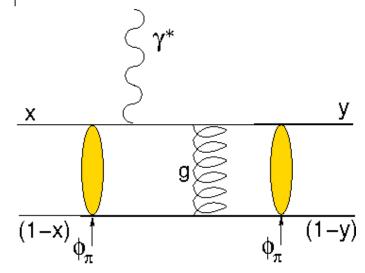
From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

A program of study unique to Hall C (until completion of EIC)

pQCD and the Charged Pion Form Factor

At large Q^2 , perturbative QCD (pQCD) can be used

$$F_{\pi}(Q^2) = \frac{4\pi C_F \alpha_S(Q^2)}{Q^2} \left| \sum_{n=0}^{\infty} a_n \left(\log \left(\frac{Q^2}{\Lambda^2} \right) \right)^{-\gamma_n} \right|^2 \left[1 + O\left(\alpha_S(Q^2), \frac{m}{Q} \right) \right]$$

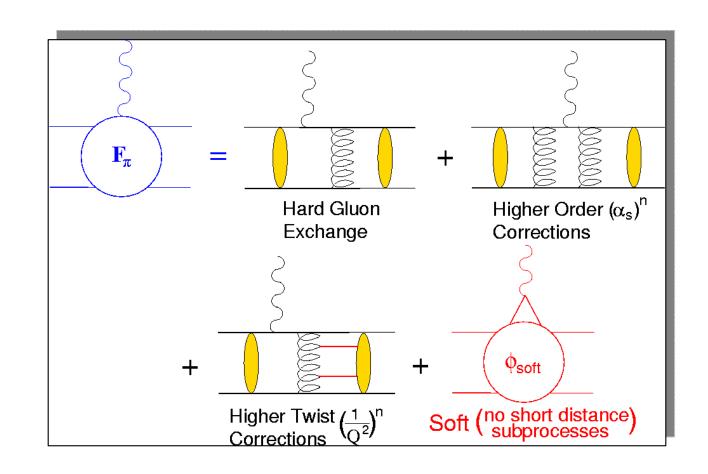

at asymptotically high Q^2 , only the hardest portion of the wave function remains

$$\phi_{\pi}(x) \underset{\mathcal{Q}^2 \to \infty}{\longrightarrow} \frac{3 f_{\pi}}{\sqrt{n_c}} x (1 - x)$$

and F_{π} takes the very simple form

$$F_{\pi}(Q^2) \underset{Q^2 \to \infty}{\longrightarrow} \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. **87B**(1979)359


where f_{π} =92.4 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant.

This prediction only relies on asymptotic freedom in QCD, i.e. $(\partial \alpha_s/\partial \mu) < 0$ as $\mu \rightarrow \infty$

Pion Form Factor at Finite Q²

- At finite momentum transfer, higher order terms contribute.
- Calculation of higher order, "hard" (short distance) processes difficult, but tractable.



Q^2F_{π} should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 .

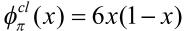
→ Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]

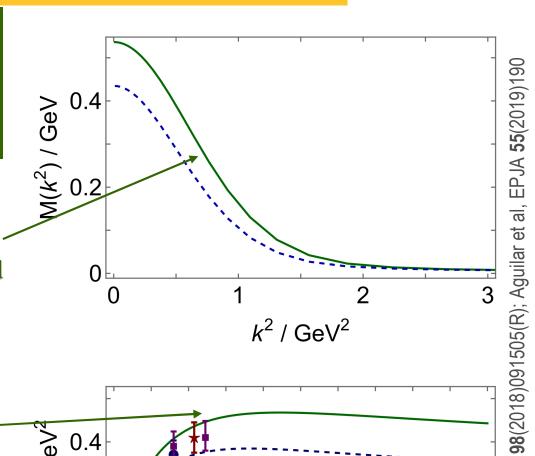
Contrasts in Hadron Mass Budgets

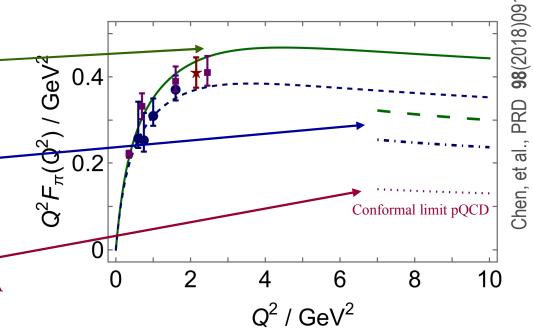
Stark Differences between proton, K^+ , π^+ mass budgets

- Due to Emergent Hadronic Mass (EHM), Proton mass large in absence of quark couplings to Higgs boson (chiral limit).
- Conversely, and yet still due to EHM and DCSB, K and π are massless in chiral limit (i.e. they are Goldstone bosons of QCD).
- The mass budgets of these crucially important particles demand interpretation.
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K.

Synergy: Emergent Mass and π^+ Form Factor




At empirically accessible energy scales, π^+ form factor is sensitive to emergent mass scale in QCD


- Two dressed—quark mass functions distinguished by amount of DCSB
 - DCSB emergent mass generation is 20% stronger in system characterized by solid green curve, which is more realistic case

- r_{π} =0.66 fm with solid green curve
- r_{π} =0.73 fm with solid dashed blue curve
- $F_{\pi}(Q^2)$ predictions from QCD hard scattering formula, obtained with related, computed pion PDAs
- QCD hard scattering formula, using conformal limit of pion's twist–2 PDA

Why Meson Form Factors?

- The π^+ form factor is our best hope of observing experimentally QCD's transition from soft QCD to hard QCD
 - This transition is expected to occur at a much lower Q² than for the proton
- K⁺ form factor:
 - How does meson structure change when s quark is substituted for d quark?
 - At what Q^2 will the K^+ to π^+ form factor ratio converge to the value predicted by QCD?
- The normalization of π^+ and K^+ form factors at high Q² is sensitive to quark and gluon energy contributions to emergent hadronic mass
 - A comparison of π^+ and K⁺ form factors over a wide range of Q² will provide unique information relevant to our understanding of hadronic mass generation

Measurement of π^+ Form Factor – Larger Q^2

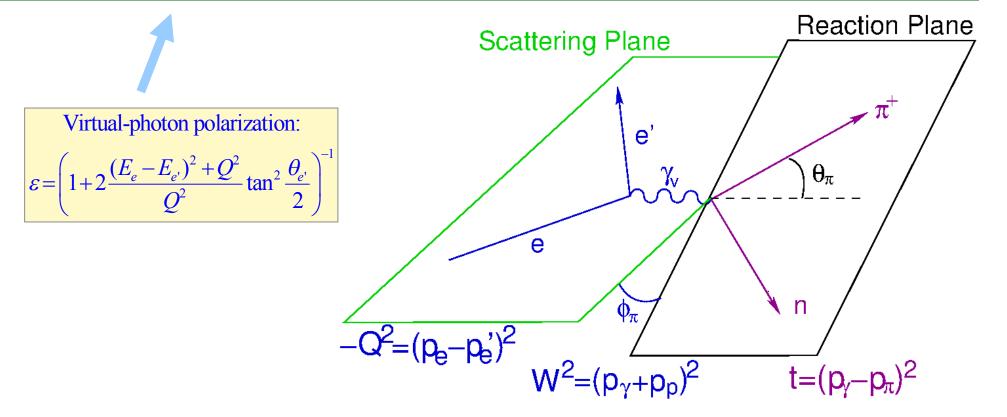
At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$


$$|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$

- At small -t, the pion pole process dominates the longitudinal cross section, σ_l
- In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique


- 1. Isolating σ_{L} experimentally challenging
- 2. Theoretical uncertainty in form factor extraction.

 K^+ pole is further in the unphysical region, uncertainties will be larger

$$2\pi \frac{d^2\sigma}{dt d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

University

- L-T separation required to separate σ_L from σ_T
- Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole
- Need to measure *t*—dependence of σ_L at fixed Q^2 , W

L/T-separation error propagation

Error in $d\sigma_L/dt$ is magnified by $1/\Delta \varepsilon$, where $\Delta \varepsilon = (\varepsilon_{Hi} - \varepsilon_{Low})$

 \rightarrow To keep magnification factor <5x, need $\Delta \epsilon$ >0.2, preferably more!

$$\frac{d^{2}\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} + \sqrt{2\,\varepsilon\,(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi_{\pi} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi_{\pi}$$

$$\frac{\Delta\sigma_{L}}{\sigma_{L}} = \frac{1}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\left(R + \varepsilon_{1}\right)^{2} + \left(R + \varepsilon_{2}\right)^{2}} \qquad \text{where } R = \frac{\sigma_{T}}{\sigma_{L}}$$

$$\frac{\Delta\sigma_{T}}{\sigma_{T}} = \frac{1}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\varepsilon_{1}^{2} \left(1 + \frac{\varepsilon_{2}}{R}\right)^{2} + \varepsilon_{2}^{2} \left(1 + \frac{\varepsilon_{1}}{R}\right)^{2}}$$

The relevant quantities for F_{π} extraction are R and $\Delta \varepsilon$

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Experimental Issues

What is being measured?

- Scattered electron and π⁺/K⁺ in coincidence with the two high performance spectrometers in Hall C
 - High momentum, forward angle (5.5°) meson detection is required, with good Particle ID to separate π^+ , K^+ , p
 - Good momentum resolution required to reconstruct crucial kinematics, such as M_{miss}, Q², W, t
 - Need to measure the longitudinal cross section $d\sigma_L/dt$ needed for form factor extraction

The role of 22 GeV electrons?

- Allows access to higher Q²
- Expanded range of virtual photon polarization $\Delta ε = (ε_{HI} ε_{LO})$, leading to reduced errors in the extraction of $d\sigma_I/dt$
 - Uncertainty in $\sigma_L \sim 1/\Delta \varepsilon$, desire $\Delta \varepsilon > 0.2$, preferably larger

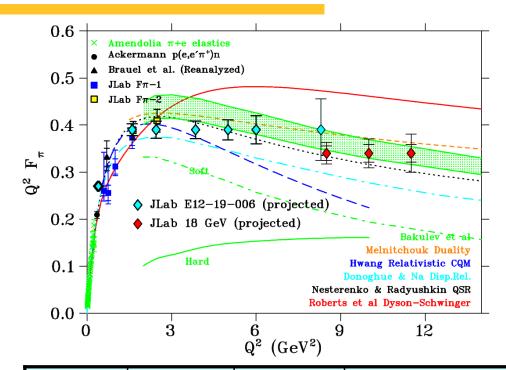
Upgrade Scenarios Considered

Phase 1: higher energy beam, keep HMS+SHMS largely as is, with relatively small DAQ and PID upgrades

- See what can be accomplished in "cost effective approach"
- Goal: to extend kinematic range of L/T-separated measurements beyond what is possible with JLab 11 GeV beam

Phase 2: Replace HMS with a new Very High Momentum Spectrometer (VHMS) to enable measurements utilizing full 22 GeV beam energy

See what extra physics can be obtained for significantly larger investment

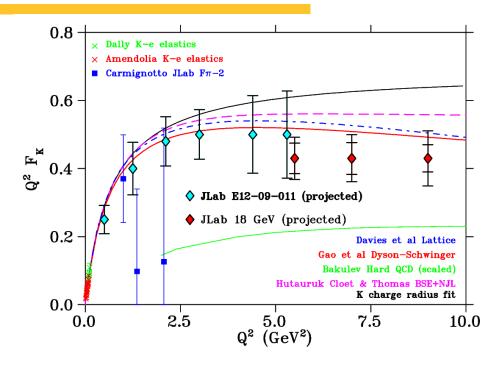


Hall C
instrumentation
has been
optimized for
specifically such
studies

Phase 1 Scenario: π^+ Form Factor

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility, with no major upgrades
 - Success depends on good K^+/π^+ separation in SHMS at high momenta, likely requires a modest aerogel detector upgrade
 - Experiment could be done as soon as beam energy is available!
 - Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- F_{π} assumes same statistics as acquired in PionLT experiment
- Inner error bar is projected statistical and systematic error
- Outer error bar also includes a model uncertainty in the form factor extraction, added in quadrature

	10.6	18.0	Improvement						
	GeV	GeV	in $\delta F_{\pi}/F_{\pi}$						
Q ² =8.5	Δε=0.22	Δε=0.40	17.9%→4.6%						
Q ² =10.0	Nev	v high quali	ty F _π data						
Q ² =11.5	~	Larger F_{π} extraction uncertainty due to higher $-t_{\min}$							
		ado to mgm	' ' mın						


■ Since quality L–T separations are impossible at EIC (can't access ε <0.95) this extension of L–T separated data considerably increases F_{π} data set overlap between JLab and EIC

Phase 1 Scenario: K⁺ Form Factor

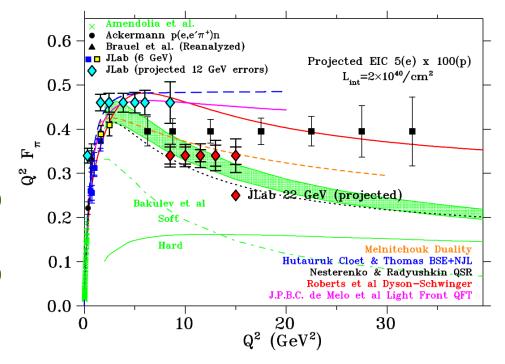
- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility
- Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- Success depends on good K^+/π^+ separation in SHMS at high momenta, likely requires a modest aerogel detector upgrade
- Counting rates are roughly 10x lower than pion form factor measurement

	10.6 GeV	16.0 GeV	Improvement in $\delta F_{\kappa}/F_{\kappa}$
Q ² =5.5	Δε=0.33	Δε=0.40	17.9%→10.4%
Q ² =7.0	Ne	w high quali	ty F _K data
Q ² =9.0	_	F_K extraction due to high	on uncertainty er -t _{min}

- Projected running times extremely long
- F_K errors uncertain, as E12–09–011 analysis not yet completed
- F_K feasibility studies at EIC are ongoing, but we already know that such measurements there are exceptionally complex.
- JLab measurements likely a complement to those at EicC.

Phase 2 Scenario: π^+ Form Factor

■ Replace HMS with VHMS for π^+ , use SHMS for e'


- ■Assume θ_{min} =5.5°, θ_{open} =15.0°
- ■VHMS: ΔΩ, ΔP/P similar SHMS
- P_{VHMS}=15.0 GeV/c is sufficient, constrained by max beam energy
- θ_{VHMS}~5.5° allows improved Δε, but does not affect maximum Q² reach
- \bullet θ_{SHMS} <12.0°, P_{SHMS} >9.0 not used
- Dramatic increase in upper Q² 11.5 → 15.0 GeV²
- Error bars for Q²=8.5–11.5 GeV² substantially decrease due to smaller $-t_{min}$ (better $R=\sigma_T/\sigma_L$) and shorter running times
- Q²=15.0 GeV² point would be "expensive" in terms of running time, but it would likely have very high scientific priority

Feasible scenario for Phase 2 Upgrade

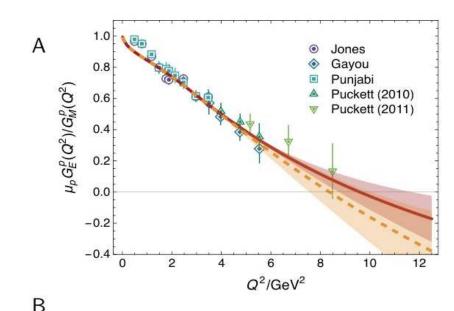
					i			
	p(e,e'π ⁺)n	Kinemat	ics				
E _{beam}	θ _{SHMS} (e')	P _{SHMS} (e')	$ heta_{ ext{q(VHMS)}} \ (\pi^+)$	$P_{VHMS} \ (\pi^{\scriptscriptstyle{+}})$	Time FOM			
Q ²	=8.5 <i>V</i>	V=4.18	$-t_{min}$ =0.1	5 Δε=0	.28			
17.0	21.39	3.63	5.55	13.29	20.5			
22.0	12.15	8.63	7.62	13.29	1.8			
Q ² :	=10.0	<i>W</i> =4.08	$-t_{min}$ =0.2	21 Δε=0	.30			
17.0	24.49	3.27	5.52	13.62	53.3			
22.0	13.46	8.27	7.85	13.62	4.3			
Q ² :	=11.5	<i>W</i> =3.95	$-t_{min}$ =0.2	29 Δε=0	.31			
17.0	27.34	27.34 3.03		13.82	124.8			
22.0	14.66	8.03	8.12	13.82	9.3			
Q ² =	=13.0 l	<i>V</i> =3.96	$-t_{min}$ =0.3	35 Δε=0).25			
18.0	27.55	3.18	5.54	14.63	209.5			
22.0	16.49	7.18	7.69	14.63	24.4			
Q ² =	$Q^2=15.0$ W=3.73 $-t_{min}=0.52$ $\Delta \epsilon=0.26$							
18.0	30.24	3.06	5.73	14.66	560			
22.0	17.88	7.06	8.07	14.66	65.7			

JLab L-T Separations in the EIC Era

JLa	ab 22 G	SeV	EIC 5x100				
Q ²	V	-t _{min}	Q ²	W	-t _{min}		
8.5	4.18	0.15	5.9	7.71	0.02		
10.0	4.08	0.21	8.5	8.06	0.02		
11.5	3.95	0.29	11.7	8.53	0.02		
13.0	3.96	0.35	16.9	8.88	0.03		
15.0	3.73	0.52	22.5	9.03	0.05		

■ Quality L/T-separations impossible at EIC (can't access ε<0.95)

- High W can be accessed, so $-t_{min}$ is low
- Projected T/L ratio: ~0.05 at $-t_{min}$, to 0.5 at -t=0.3 GeV²
- Model must be used to correct for σ_T contribution
- Model must be validated from other data, adds systematic uncertainty


JLab will remain ONLY source of quality L-T separated data!

- $-t_{min}$ is higher, but true L/T separation is performed
- \blacksquare Overlap of F_π data set between JLab and EIC needed to constrain EIC model uncertainty

Nucleon charge/magnetic FF ratios

- Proton electric form factor possesses a zero
 - $\mathbf{Q}^2 = 8.86^{+1.93}_{-0.86} \, \text{GeV}^2$
- Neutron electric form factor is positive definite
 - $G_E^n(Q^2) > G_E^p(Q^2)$ on $Q^2>4.7 \text{ GeV}^2$
 - On this domain, electric form factor of charge-neutral neutron is larger than that of charge-one proton
 - A remarkable, non-intuitive result!
- Verification of this is within JLab reach
 - perhaps already in Gen-II data?
- Curves are Continuum Schwinger Model (CSM)

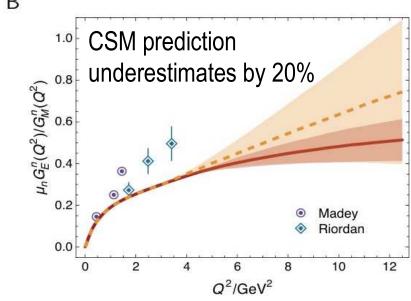


FIG. 6. Panel A: $\mu_p G_E^p/G_M^p$. Panel B: $\mu_n G_E^n/G_M^n$. SPM I – dashed orange curve within like-coloured band; and SPM II – solid red curve within like-coloured band. Data: proton – Refs. [20–24]; and neutron – Refs. [87, 97].

Flavor Separation of Charge, Magnetic FF

Isospin symmetry limit:

- Behaviors of $\mu_p G_E^p/G_M^p$ and $\mu_p G_E^n/G_M^n$ are correlated $(e_u=2/3, e_d=-1/3)$
- $G_E^p = e_u G_E^u + e_d G_E^d$
- $G_E^n = e_u G_E^d + e_d G_E^u$

■ G_E^p possesses a zero because

- although remaining positive,
 G_E^u/G_M^p falls steadily with /
 increasing Q²
- while G_E^d/G_M^p>0 and approximately constant
- G_Eⁿ predicted to NOT exhibit a zero at high Q² because
 - e_u>0, G_E^d/G_M^p large & positive
 - \blacksquare $|e_dG_E^u|$ always $< e_uG_E^{pd}$

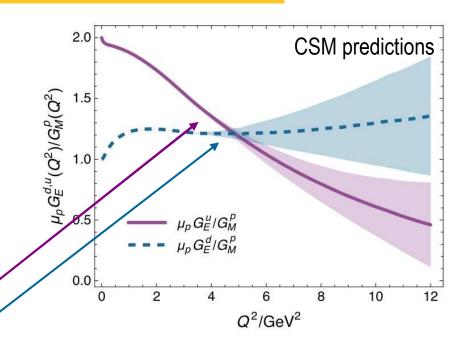
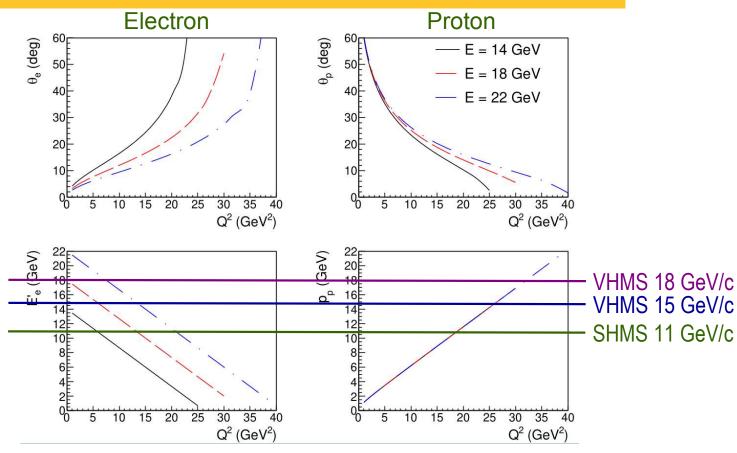
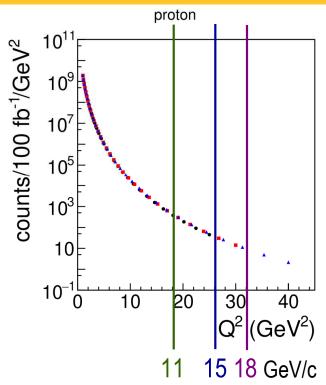



Figure 8: Flavour separation of the charge and magnetisation form factors, with each function normalised by G_M^p in order to highlight their differing Q^2 -dependence.

- For nucleons, discovering QCD scaling and scaling violations requires Q²>18 GeV²
- Each feature is a sensitive expression of emergent phenomena in QCD

Elastic eN Kinematics @ 14, 18, 22 GeV



- Scattering angles well matched to acceptances of a variety of JLab detectors (CLAS12, SoLID, HMS+SHMS, SBS+BigBite
- High proton momentum is a challenge:
 - SHMS could measure up to Q²=18 GeV²
 - VHMS could allow Q²=26-32 GeV², depending on capability
 - Large acceptance spectrometers would have resolution challenges at high Q²

huberg@uregina

Elastic eN Count Rate Projections

	Luminosity (cm ⁻² s- ¹ , e-N)	fb ⁻¹ / day
NH ₃ /ND ₃ polarized p/n	10 ³⁵	8.64
³ He SEOP polarized n	10 ³⁷	8.64
LH ₂ /LD ₂ unpolarized	10 ³⁸⁻³⁹	8600 — 86000

- Event rate per unit integrated luminosity for 14, 18, 22 GeV beam
 - Assumes Q² bin width ≈ Q² spacing between points
 - Assumes 2π azimuthal acceptance
- JLab provides lots of count rate up to maximum accessible Q²
 - EIC best case: 100 fb⁻¹/year

Summary

- Meson and nucleon form factors are fundamental structure observables that are intimately linked to many open questions in QCD
 - QCD's transition from soft to hard degrees of freedom
 - Unraveling emergent phenomena in QCD
- 22 GeV upgrade enables a significant expansion of Q² reach
 - π + form factor up to Q²=11.5(15) GeV² with SHMS(VHMS)
 - K⁺ form factor up to Q²=9 GeV² with SHMS
 - Unfortunately, running times are very long
 - Proton/Neutron up to Q²=18(26-32) GeV²
- Understanding how QCD explains the emergence of hadron mass and structure requires investment in facilities that can deliver precision data on mesons, nucleons, and beyond

F_{π} PionLT Projected Uncertainties

	p(e,e'π ⁺)n Kinematics									
E _{beam} (GeV)	3	θ _{HMS} (e')	P _{HMS} (e')	$oldsymbol{ heta_{q(SHMS)}}{(\pi^+)}$	${f P_{SHMS}} \ (\pi^+)$	LH ₂ Run hrs	Online #Events /t-bin	δσ _{UNS} (stat & est uncorrel syst unc)	δσ _L (stat & est uncorrel+ correlated syst unc)	δF _π (stat & est syst unc / incl est model unc)
			$Q^2=5$	5.0 <i>W</i> =2.	.95 <i>-t_{min}=</i>	0.21	R(VR)=T	/L=0.79		
8.0	0.22	44.37	1.10	6.17	6.72	64	3.9k	2.3%	10.8%	5.4% /
10.6	0.60	20.57	3.72	10.47	6.72	36	6.4k	2.1%		12.2%
			$Q^2=$	6.0 <i>W</i> =3	3.19 <i>-t_{min}=</i>	=0.37 F	R(VR)=T/	L=0.70		
9.2	0.18	47.04	1.03	5.06	8.04	166	4.1k	2.3%	10.7%	5.4% /
10.6	0.40	28.18	2.40	7.65	8.04	97	6.4k	2.1%		12.2%
	Q^2 =8.5 W =2.79 $-t_{min}$ =0.55 R(VR)=T/L=1.71									
9.2	0.15	58.53	0.97	5.44	7.91	615	2.5k	2.6%	35.8%	17.9% /
10.6	0.38	34.11	2.34	8.67	7.91	101	1.9k	2.4%		33.5%

- σ_{UNS} errors include 0.6% pt-pt and 1.6% t-correlated syst unc from E12-06-101 proposal
- σ_L errors include 3.3% scale systematic uncertainty from E12-06-101 proposal

Phase 1 Scenario: π^+ Form Factor

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility, with no major upgrades
 - Experiment could be done as soon as beam energy is available!
 - Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
 - Q²=8.5 and 11.5 Time FOM similar to PionLT Q²=6.0 and 8.5 points

	10.6 GeV	18.0 GeV	Improvement in $\delta F_{\pi}/F_{\pi}$
Q ² =8.5	Δε=0.22	Δε=0.40	17.9%→4.6%
Q ² =10.0	Nev	v high quali	ty F _π data
Q ² =11.5		F_{π} extraction due to higher	on uncertainty er —t _{min}

	p(e,e'π ⁺)n Kinematics									
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{q(SHMS)} \ (\pi^+)$	P _{SHMS} (π ⁺)	Time FOM					
Q ² =	=8.5 W	/= 3.64	$-t_{min}$ =0.2	24 Δε=0).40					
13.0	34.30	1.88	5.29	10.99	64.7					
18.0	15.05	6.88	8.94	10.99	2.2					
Q ² =	10.0 <i>V</i>	<i>V</i> =3.44	$-t_{min}$ =0.	37 Δε=	0.40					
13.0	37.78	1.83	5.56	10.97	122.7					
18.0	16.39	6.83	9.57	10.97	4.5					
Q ² =	11.5 <i>V</i>	V=3.24	$-t_{min}$ =0.	54 Δε=	0.29					
14.0	31.73	2.75	7.06	10.96	82.4					
18.0	17.70	6.75	10.05	10.96	8.8					

■ Since quality L–T separations are impossible at EIC (can't access ε <0.95) this extension of L–T separated data considerably increases F_{π} data set overlap between JLab and EIC

F_{π} Hall C Phase 1 (existing HMS+SHMS)

	p(e,e'π ⁺)n Kinematics									
E _{beam} (GeV)	3	θ _{HMS} (e')	P _{HMS} (e')	$oldsymbol{ heta_{q(SHMS)}}{(\pi^+)}$	${f P}_{\sf SHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM	#Events /t-bin	δσ _{UNS} (stat & est uncorrel syst unc)	δσ _L (stat & est uncorrel+ correlated syst unc)	δF _π (stat & est syst unc / incl est model unc)
			$Q^2=8$	3.5 <i>W</i> =3.	.64 -t _{min} =	0.24	R(VR)=T	/L=0.56		
13.0	0.25	34.30	1.88	5.29	10.99	64.7	3.2k	2.5%	9.1%	4.6% /
18.0	0.65	15.05	6.88	8.94	10.99	2.2	4.8k	2.2%		9.6%
			$Q^2 = 1$	0.0 W=	$3.44 - t_{min}$	=0.37	R(VR)=T	/L=0.80		
13.0	0.24	37.78	1.83	5.56	10.97	122.7	2.8k	2.56%	11.1%	5.6% /
18.0	0.64	16.39	6.83	9.57	10.97	4.5	4.2k	2.3%		12.7%
	$Q^2=11.5$ W=3.24 $-t_{min}$ =0.54 R(VR)=T/L=1.20									
14.0	0.22	31.73	2.75	7.06	10.96	82.4	2.0k	2.8%	16.3%	5.4% /
18.0	0.63	17.70	6.75	10.05	10.96	8.8	2.0k	2.8%		18.8%

- σ_{UNS} errors include 0.6% pt-pt and 1.6% t-correlated syst unc from E12-06-101 proposal
- σ_L errors include 3.3% scale systematic uncertainty from E12-06-101 proposal

Phase 1 Scenario: K⁺ Form Factor

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility
- Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- Success depends on good K^+/π^+ separation in SHMS at high momenta, likely requires a modest aerogel detector upgrade
- Counting rates are roughly 10x lower than pion form factor measurement

	10.6 GeV	16.0 GeV	Improvement in $\delta F_{K}/F_{K}$					
Q ² =5.5	Δε=0.33	Δε=0.40	17.9%→10.4%					
Q ² =7.0	Ne	w high quali	ty F _K data					
Q ² =9.0		Larger F_K extraction uncertainty due to higher - t_{min}						

	p(e,e'K ⁺)Λ Kinematics									
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{q(SHMS)} \ (K^+)$	P _{SHMS} (K ⁺)	Time FOM					
Q ² =	=5.5 W	′ =3.56	$-t_{min}$ =0.	32 Δε=0	0.40					
11.0	30.69	1.79	5.50	8.84	746					
16.0	12.92	6.79	9.18	8.84	150					
Q ² =	=7.0 W	′ =3.90	$-t_{min}$ =0.	33 Δε=0	0.29					
14.0	25.16	2.64	5.51	10.98	620					
18.0	13.91	6.64	7.85	10.98	192					
Q ² =	=9.0 W	= 3.66	$-t_{min}$ =0.	54 Δε=0	0.30					
14.0	29.17	2.54	5.98	10.97	964					
18.0	15.90	6.54	8.69	10.97	350					

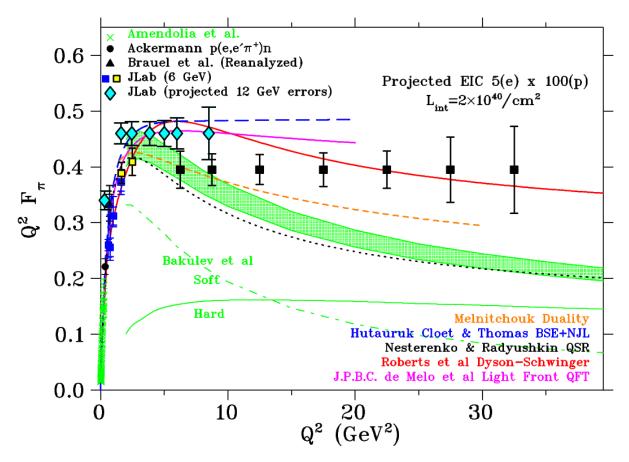
- F_K feasibility studies at EIC are ongoing, but we already know that such measurements there are exceptionally complex.
- JLab measurements likely a complement to those at EicC.

F_K Hall C Phase 1 (existing HMS+SHMS)

	p(e,e'K ⁺)Λ Kinematics									
E _{beam} (GeV)	3	θ _{HMS} (e')	P _{HMS} (e')	$\theta_{q(SHMS)} \\ (K^+)$	$\mathbf{P}_{SHMS} \ (\mathrm{K}^+)$	Time FOM	#Events /t-bin	δσ _{UNS} (stat & est uncorrel syst unc)	δσ _L (stat & est uncorrel+ correlated syst unc)	δF _π (stat & est syst unc / incl est model unc)
			$Q^2=5$	5.5 <i>W</i> =3.	.56 -t _{min} =	0.22	R(VR)=T	/L=1.17		
11.0	0.36	30.69	1.79	5.50	8.84	746	3.0k	2.5%	20.8%	10.4% /
16.0	0.64	12.92	6.79	9.18	8.84	150	3.0k	2.6%		20.4%
			Q ² =	7.0 <i>W</i> =3	3.90 <i>-t_{min}=</i>	=0.33 F	R(VR)=T/	L=1.19		
14.0	0.34	25.16	2.64	5.51	10.98	620	2.5k	2.6%	21.6%	10.8% /
18.0	0.63	13.91	6.64	7.85	10.98	192	2.5k	2.6%		21.0%
	$Q^2=9.0$ W=3.66 $-t_{min}$ =0.54 R(VR)=T/L=1.63									
14.0	0.32	29.17	2.54	5.98	10.97	964	2.0k	2.8%	28.1%	9.4% /
18.0	0.62	15.60	6.54	8.69	10.97	350	2.0k	2.8%		28.0%

- σ_{UNS} errors include 0.6% pt-pt and 1.6% t-correlated syst unc from E12-06-101 proposal
- σ_L errors include 3.3% scale systematic uncertainty from E12-06-101 proposal

F_{π} Hall C Phase 2 (new VHMS for π^+ , SHMS for e')


	E _{beam} (GeV)	ε	θ _{SHMS} (e')	P _{SHMS} (e')	$oldsymbol{ heta_{q(VHMS)}}{(\pi^{\scriptscriptstyle +})}$	${\sf P}_{\sf VHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM	#Events /t-bin	δσ _{UNS} (stat & est uncorrel syst unc)	δσ _L (stat & est uncorrel+ correlated syst unc)	δF _π (stat & est syst unc / incl est model unc)
$Q^2=8.5$ W=4.18 $-t_{min}=0.15$ R(VR)=T/L=0.37											
na.	17.0	0.39	21.39	3.63	5.55	13.29	20.5	3.2k	2.5%	11.2%	5.6% /
erg@uregina	22.0	0.67	12.15	8.63	7.62	13.29	1.8	4.8k	2.2%		10.6%
man (Q^2 =10.0 W=4.08 $-t_{min}$ =0.21 R(VR)=T/L=0.45										
	17.0	0.21	24.49	3.27	5.56	13.62	53.3	3.2k	2.5%	11.2%	5.6% /
und	22.0	0.64	13.46	8.27	9.57	13.62	4.3	4.8k	2.2%		10.6%
	Q^2 =11.5 W =3.95 $-t_{min}$ =0.29 R(VR)=T/L=0.50										
nuber,	17.0	0.32	27.34	3.03	5.55	13.82	124.8	2.8k	2.6%	11.3%	5.6% /
	22.0	0.63	14.66	8.03	8.12	13.82	9.3	4.2k	2.3%		12.4%
ICCL				Q ² =1	3.0 <i>W</i> =	3.96 -t _{min}	=0.35	R(VR)=T	/L=0.80		
	18.0	0.32	27.55	3.18	5.54	14.63	209.5	2.4k	2.7%	14.2%	7.0% /
I	22.0	0.57	16.49	7.18	7.69	14.63	24.4	3.6k	2.4%		14.3%
I	Q^2 =15.0 W=3.73 $-t_{min}$ =0.52 R(VR)=T/L=1.20										
	18.0	0.30	30.24	3.06	5.73	14.66	560	2.0k	2.8%	17.9%	6.0% /
28	22.0	0.56	17.88	7.06	8.07	14.66	65.7	2.0k	2.8%		18.6%

pion_sigl_errors_higherE.ods

Garth Huber, huberg@uregina.ca

EIC Kinematic Reach (projection)

Assumptions:

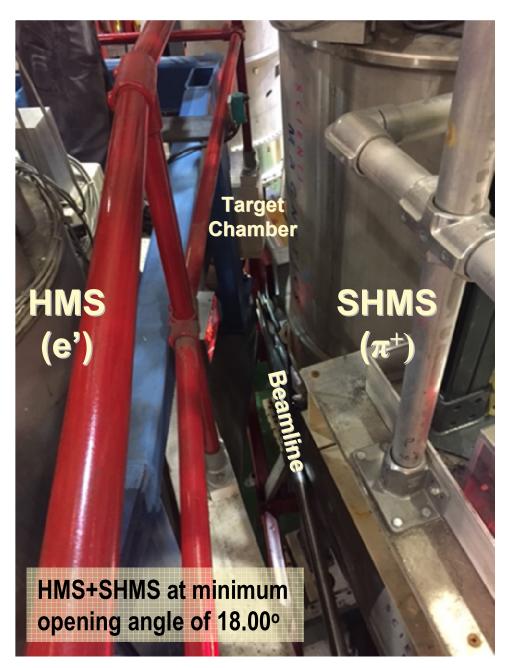
- $5(e^-) \times 100(p)$.
- Integrated L=20 fb⁻¹/yr.
- Clean identification of exclusive p(e,e'π⁺n) events.
- Syst. Unc: 2.5% pt-pt and 12% scale.
- $R = \sigma_L/\sigma_T = 0.013 0.14$ at lowest -t from VR model, and $\delta R = R$ syst. unc. in model subtraction to isolate σ_t .
- π pole dominance at small -t confirmed in 2 H π^-/π^+ ratios.

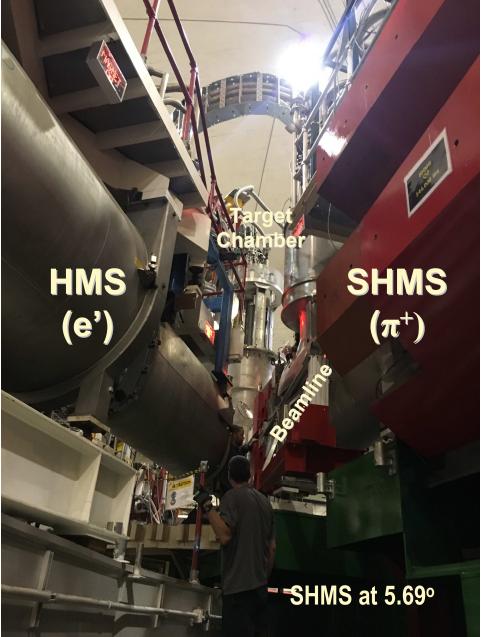
ECCE 2022 projections shown

Projections to be updated soon using latest ePIC detector simulation

Garth Huber, huberg@uregina.ca

F_{π} EIC 5x100 ε=0.999

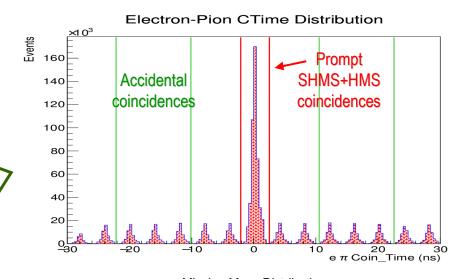

Q ² mean (GeV ²)	W _{mean} (GeV)	-t _{bin} (GeV ²)	R(VR) =T/L	Rate (Hz) L=10 ³⁴ cm ⁻² s ⁻¹	#Events /t-bin L_{int} =2x10 ⁴⁰ cm ⁻²	$\begin{array}{c} \pmb{\delta\sigma_L} \\ \text{(stat \& est uncorrel syst} \\ \text{/ est correlated syst \& } \sigma_{\text{T}} \\ \text{subtraction unc)} \end{array}$	δF _π (stat and est correlated+ uncorrel syst unc)	
5.87	7.71	0.02	0.12	0.29	290k	3.4% / 15.8%	8.4%	
		0.30	1.03	0.12	119k	27.2% / 52.2%		spo
8.48	8.06	0.02	0.073	0.045	45.1k	3.4% / 13.8%	7.4%	2204mod.ods
		0.30	0.65	0.019	18.9k	17.8% / 41.1%		1
11.71	8.53	0.02	0.047	0.012	12.4k	4.4% / 12.8%	7.1%	5x100
		0.30	0.42	8.6E-3	8.6k	12.4% / 32.1%		
16.88	8.88	0.06	0.038	3.2E-4	3.5k	7.1% / 12.5%	8.0%	ElCerrors
		0.30	0.27	1.2E-3	1.2k	13.8% / 24.4%		fpi_l
22.02	9.03	0.06	0.027	5.5E-4	550	16.9% / 12.3%	12.6%	
		0.30	0.20	3.4E-4	340	21.0% / 20.3%		
27.03	9.09	0.10	0.035	2.0E-4	200	28.3% / 12.5%	20.0%	
		0.30	0.16	1.0E-4	100	36.4% / 18.1%		

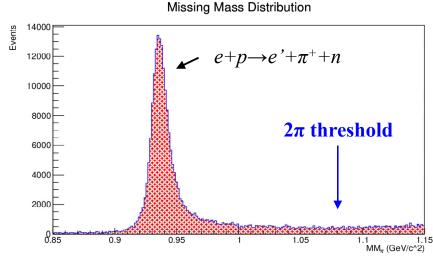

- Assume 2.5% pt-pt syst error and 12% scale syst error (similar to HERA-H1 pion struct fcn)
- Assume uncertainty in R=T/L (due to lack of L/T sep) is bounded by R, i.e. δR/R=1

Hall C during Data Taking

 π^+/K^+ FF experiments have challenging forward angle requirements

p(e,e'π⁺)n Event Selection




Coincidence measurement between charged pions in SHMS and electrons in HMS

Easy to isolate exclusive channel

- Excellent particle identification
- CW beam minimizes
 "accidental" coincidences
- Missing mass resolution easily excludes 2–pion / contributions

PionLT experiment E12–19–006 Data Q^2 =1.60, W=3.08, x= 0.157, ε=0.685 E_{beam} =9.177 GeV, P_{SHMS} =+5.422 GeV/c, $θ_{SHMS}$ = 10.26° (left) Plots by Muhammad Junaid

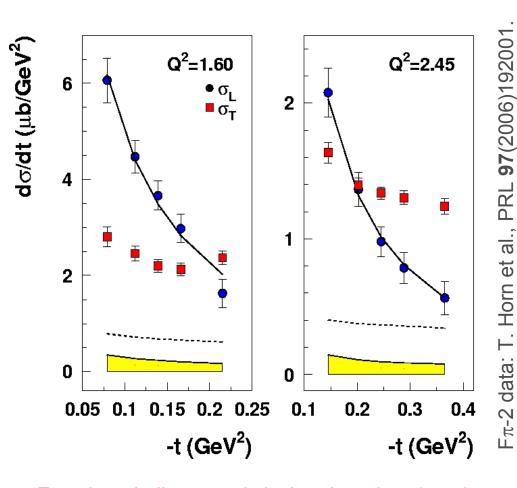
Extract $F_{\pi}(Q^2)$ from JLab σ_L data

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

■ Feynman propagator $\left(\frac{1}{t - m_{\pi}^2}\right)$

replaced by π and ρ Regge propagators.


- Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Free parameters: Λ_{π} , Λ_{ρ} (trajectory cutoff)

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

■ At small -t, σ_L only sensitive to F_{π}

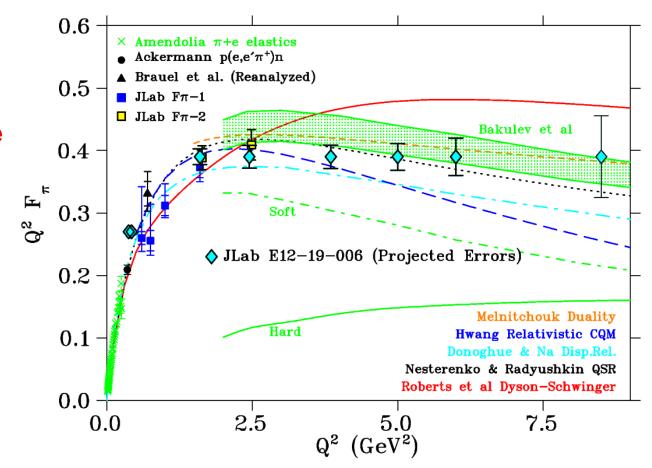
$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model σ_L gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

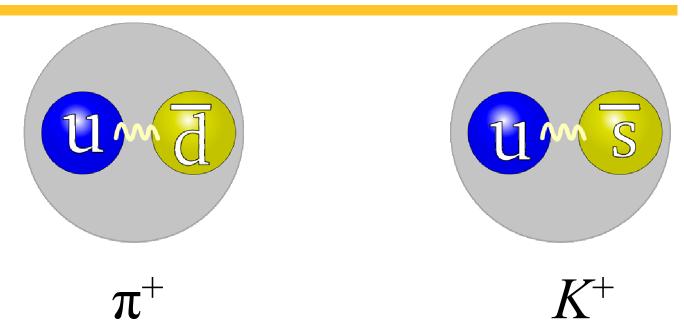
$$\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2, \Lambda_{\rho}^2 = 1.7 \text{ GeV}^2.$$


Current and Projected F_{π} Data

SHMS+HMS will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

The pion form factor is the clearest test case for studies of QCD's transition from non perturbative to perturbative regions.



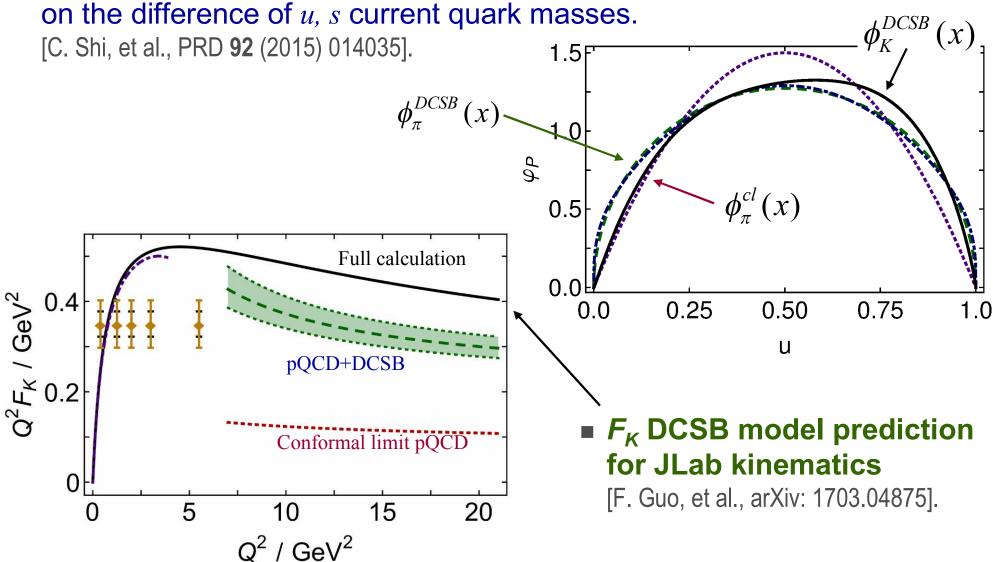
The ~17% measurement of F_{π} at Q^2 =8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

PionLT E12–19–006: D. Gaskell, T. Horn and G. Huber, spokespersons00

The Charged Kaon – a 2nd QCD test case

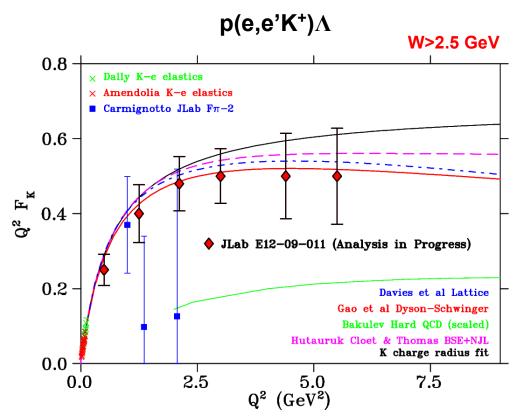
 In the hard scattering limit, pQCD predicts that the π⁺ and K⁺ form factors will behave similarly

$$\frac{F_K(Q^2)}{F_\pi(Q^2)} \xrightarrow{Q^2 \to \infty} \frac{f_K^2}{f_\pi^2}$$


■ It is important to compare the magnitudes and Q²—dependences of both form factors.

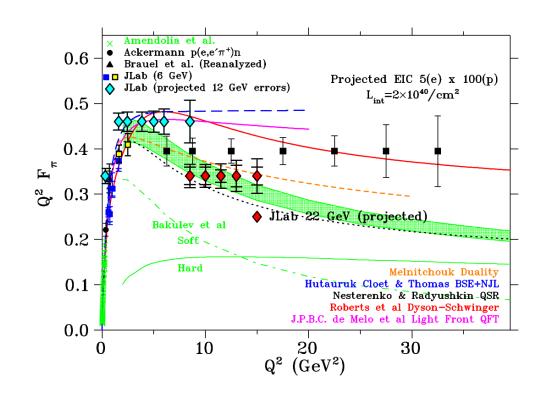
K⁺ properties also strongly influenced by EHM

■ K⁺ PDA also is broad, concave and asymmetric.


■ While the heavier *s* quark carries more bound state momentum than the *u* quark, the shift is markedly less than one might naively expect based on the difference of *u*, *s* current quark masses.

Projected Uncertainties for K⁺ Form Factor

- First measurement of F_K well above the resonance region.
- Measure form factor to Q²=3 GeV² with good overlap with elastic scattering data.
 - Limited by –t<0.2 GeV² requirement to minimize non–pole contributions.
- Data will provide an important second qq system for theoretical models, this time involving a strange quark.


KaonLT E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons

Phase 2 Scenario: π^+ Form Factor

■Replace HMS with VHMS for π^+ , use SHMS for e'

- ■Assume θ_{min} =5.5°, θ_{open} =15.0°
- ■VHMS: ΔΩ, ΔP/P similar SHMS
- P_{VHMS}=15.0 GeV/c is sufficient, constrained by max beam energy
- θ_{VHMS} ~5.5° allows improved $\Delta \epsilon$, but does not affect maximum Q² reach
- Dramatic increase in upper Q²
 11.5 → 15.0 GeV²
- Error bars for Q²=8.5–11.5 GeV² substantially decrease due to smaller $-t_{min}$ (better $R=\sigma_T/\sigma_L$) and shorter running times
- Highest Q² running time is "expensive" but would have very high scientific priority.

- Extends region of high quality F_{π} values to Q²=13 GeV²
- Somewhat larger errors to Q²=15 GeV²
- lacktriangle Provides MUCH improved overlap of F_π data set between JLab and EIC

JLab L-T Separations in the EIC Era

- Hall C is world's only facility that can do L–T separations over a wide kinematic range
- The error magnification in L—T separations depends crucially on the achievable difference in the virtual photon polarization parameter, ε.
 - Errors magnify as $1/\Delta ε$, where $\Delta ε = ε_{High} ε_{Low}$
 - To keep the magnification <500%, one desires $\Delta \varepsilon$ >0.2
 - This is not feasible at the EIC, as the high ion ring energy constrains ε>0.98
- As the interpretation of some EIC data (e.g. GPD extraction) will depend on extrapolation of Hall C L-T separated data, maximizing overlap between Hall C and EIC data sets should be a high priority
 - An important motivation for extending reach of Hall C data using 22 GeV beam

14 GeV/c HMS Scenario: π^+ Form Factor

Replace HMS with a higher momentum spectrometer

- For high z reactions, such as DEMP, usable beam energy constrained by sum of HMS+SHMS maximum momenta
- i.e. 22 GeV beam energy is a larger constraint than the maximum HMS momentum
- New HMS would not extend the Q² reach beyond Scenario 1.
 However, it would result in smaller errors due to larger Δε and faster high ε data rates

p(e,e'π ⁺)n Kinematics										
E _{beam}	1 \		$egin{array}{c cccc} P_{HMS} & \theta_{q(SHMS)} & P_{SHMS} \ (e') & (\pi^+) & (\pi^+) \end{array}$		Time FOM					
Q^2 =8.5 W=3.64 $-t_{min}$ =0.24 $\Delta \varepsilon$ =0.53										
13.0	34.30	1.88	5.29	10.99	64.7					
22.0	10.81	10.88	10.23	10.99	0.6					
Q ² =	$Q^2=10.0 W=3.44 -t_{min}=0.37 \Delta \epsilon=0.54$									
13.0	37.78	1.83	5.56	10.97	122.7					
22.0	11.76	10.83	10.97	10.97	1.3					
$Q^2=11.5$ $W=3.24$ $-t_{min}=0.54$ $\Delta \epsilon=0.29$										
14.0	31.73	2.75	7.06	10.96	82.4					
22.0	12.66	10.75	11.56	10.96	2.5					

This scenario is judged to not be worth it, at least for this reaction channel

Upgrade HMS Momentum and Angle: F_{π}

Upgrade both HMS momentum and forward angle capabilities

- 7 GeV/c → 11 GeV/c
- θ_{min} = 10.50° \rightarrow 7.5°
- $\theta_{\text{open}} = 18.00^{\circ} \rightarrow 15.00^{\circ}$
- This upgrade also does not extend the Q² reach beyond Scenario 1.
- However, it would result in smaller errors due to larger Δε and faster high ε data rates

p(e,e'π ⁺)n Kinematics										
E _{beam}	E_{beam} θ_{HMS} (e')		$ heta_{q(SHMS)} \ (\pi^+)$	$P_{SHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM					
$Q^2=8.5$ W=3.64 $-t_{min}$ =0.24 $\Delta \varepsilon$ =0.53										
13.0	34.30	1.88	5.29	10.99	64.7					
22.0	10.81	10.88	10.23	10.99	0.6					
Q ²	$Q^2=10.0 W=3.44 -t_{min}=0.37 \Delta \epsilon=0.54$									
13.0	37.78	1.83	5.56	10.97	122.7					
22.0	11.76	10.83	10.97	10.97	1.3					
Q^2 =11.5 W=3.24 $-t_{min}$ =0.54 Δε=0.29										
14.0	31.73	2.75	7.06	10.96	82.4					
22.0	12.66	10.75	11.56	10.96	2.5					

 Basically the same as Scenario 2. Not worth it, at least for this channel

15 GeV/c SHMS Scenario: π^+ Form Factor

- Replace SHMS with higher momentum spectrometer, but keep HMS as is
- Dramatic increase in upper Q²
 11.5 → 15.0 GeV²
- Error bars for Q²=8.5–11.5 GeV² would substantially decrease due to smaller $-t_{\min}$ (better $R=\sigma_{\text{T}}/\sigma_{\text{L}}$) and shorter running times
- The Q²=15.0 GeV² point would be "expensive" in terms of running time, but its high scientific priority would make it worthwhile
- This seems a compelling scenario for a Phase 2 Upgrade

p(e,e'π ⁺)n Kinematics										
E _{beam}		P _{HMS} (e')	$ heta_{ extsf{q(SHMS)}} \ (\pi^+)$	$P_{SHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM					
Q^2 =8.5 W=4.06 $-t_{min}$ =0.17 $\Delta \epsilon$ =0.26										
16.0	23.68	3.15	5.52	12.75	17.7					
20.0	14.00	7.15	7.55	12.75	1.9					
$Q^2=10.0$ W=3.96 $-t_{min}$ =0.23 $\Delta \varepsilon$ =0.28										
16.0	27.41	2.78	5.41	13.09	47.7					
20.0	15.60	6.78	7.72	13.09	4.5					
Q ² =	$Q^2=11.5$ W=3.96 $-t_{min}$ =0.29 $\Delta \varepsilon$ =0.27									
17.0	27.54	2.98	5.49	13.86	76.3					
21.0	16.10	6.98	7.72	13.86	8.1					
$Q^2 = 1$	13.0 W	/=3.96	$-t_{min}$ =0.3	35 Δε=0).25					
18.0	27.55	3.18	5.54	14.63	123.6					
22.0	16.49	7.18	7.69	14.63	14.4					
$Q^2=15.0$ W=3.78 $-t_{min}=0.50$ $\Delta \epsilon=0.27$										
18.0	31.30	2.86	5.46	14.87	391					
22.0	18.14	6.86	7.86	14.87	41.4					