Science at the Luminosity Frontier: Jefferson Lab at 22 GeV (LNF - 2024)

SIDIS Kinematic regions and their role in giving the correct theory interpretation to experimental measurements

Mariaelena Boglione

QCD and Factorization

- The interplay between **perturbative** and **non-perturbative** regimes is currently one of the most challenging aspects in phenomenology, which is presently explored at Jlab12 and (even more so) at Jlab22.
- **Factorization** allows to separate the perturbative content of an observable from its non-perturbative content. At large *Q* and small *m*, the non-perturbative contributions are separated out from anything that can be computed by using perturbative techniques, and identified with universal quantities (structure functions).
- **Factorization** restores the predictive power of QCD

Factorization: region classification

J. Collins, Foundations of perturbative QCD (Cambridge University Press, 2011)

Particles are classified according to how they propagate in space, i.e. according to their virtuality.

Factorization: region classification

General structure of a generic factorization theorem:

- Each term is equipped with proper subtractions.
- The soft factor S encodes the *correlation* among the various collinear parts.
- While **H can be computed in pQCD, S and C have to be determined using non perturbative methods**. For instance they can be modeled and extracted from experimental data, or computed in lattice QCD

FACTORIZATION: Collinear vs TMD

■ Factorization: **identify, isolate, separate perturbative from non-perturbative contributions**

This is intimately related to a clear identification of different kinematic regions, where different theoretical schemes must be applied

COLLINEAR

 TMD

 $q_T \ll Q$

There is *enough* transverse momentum to produce jets at wide angles in the final state.

The low transverse momenta of the struck parton, of the fragmenting parton and of soft radiation are totally negligible

The production of hard jets with high transverse momentum is strongly suppressed

The low transverse momenta of the struck parton, of the fragmenting parton and of soft radiation are *relevant*

Factorization: collinear vs TMD

becomes negative (and large).
becomes negative (and large). cross sections are expected to be matched

> The Y term corrects for the misbehavior of W as q_T gets larger, providing a consistent (and positive) q_T differential cross section.

Factorization in SIDIS

Factorization regions

- Fixed order pQCD calculations describe the SIDIS cross section at large q_T COLLINEAR factorization
- \star The cross section at small q_T is dominated by non perturbative contributions TMD factorization (complemented with non perturbative modeling)
- ★ The intermediate region is a "matching region"

ZEUS Collaboration (M. Derrick), Z. Phys. C 70, 1 (1996)

TMD vs Collinear regions

- **For this scheme to work, distinct kinematic regions have to be identified**
- **They should be large enough and well separated**

Warning: factorization identifies 2 regions, at the 2 ends of the q_T spectrum!

Issues arise in the **intermediate region** (transition from pert. to non-pert. regimes)

Perturbative vs non-perturbative contributions

Study evolution in the transverse coordinate space, b_T (F.T. space of k_T)

 \blacksquare Freeze all perturbative scales when reaching the non perturbative region

b* prescription

$$
b_T \longrightarrow b_* = \frac{b_T}{\sqrt{1+b_T^2/b_{max}^2}} \longrightarrow b_*(b_T) = \begin{cases} b_T & b_T \ll b_{max} \\ b_{max} & b_T \gg b_{max} \end{cases}
$$

 \blacksquare Define a non-perturbative function for large b_{\top} :

TMD =
$$
\tilde{f}_{j/h}(x, b_T; \mu_{Q_0}, Q_0^2) = \tilde{f}_{j/h}(x, b_*; \mu_{Q_0}, Q_0^2) \left(\frac{\tilde{f}_{j/h}(x, b_T; \mu_{Q_0}, Q_0^2)}{\tilde{f}_{j/h}(x, b_*; \mu_{Q_0}, Q_0^2)} \right)
$$

Perturbative (small b_T) Non perturbative (large b_T)

Model the (unknown) non perturbative function

Let the fit determine the value of the free parameters of the non-pert. model

Perturbative vs non-perturbative contributions

■ **ISSUE 1**: the b^{*} prescription isolates the perturbative perturbative part of the TMD and restricts it to low values of b_T (i.e. to large values of k_T)

BUT in this prescription **nothing prevents infiltrations of the non-perturbative model into the perturbative region**, at small values of b_{T.}

■ **ISSUE 2**: in practical implementations, the function b^{*}(b_T) can become another non perturbative model, and the value of b_{MAX} a model parameter.

ISSUE 3: TMDs should satisfy an integral relation which links them to their collinear counterparts \mathbf{r}

$$
f(x) = \int d^2 \mathbf{k_T} f(x, \mathbf{k_T})
$$

■ **ISSUE 4**: discrepancies observed in the size of the collinear large q_T tail cross sections ...

Collinear cross sections at large q^T

 \star At high q_T the collinear formalism should be valid, but large discrepancies are observed

Discrepancy is about one order of magnitude

Gonzalez-Hernandez, Rogers, Sato, Wang, Phys.Rev.D 98 (2018) 11, 114005

Perturbative vs non-perturbative contributions

- \blacksquare These complications are ultimately connected to the fact that the usual b* organization prescribes the existence of only 2 very sharply defined contributions: 1 that involves entirely perturbative $b\tau$ dependence and 1 that is entirely non-perturbative.
- \blacksquare A more realistic view is that there are 3 types of b_T -dependence:
	- 1) A totally non-perturbative behavior as $b_T \rightarrow \infty$
	- 2) A very reliable collinear factorization as $b_T \rightarrow 1/Q_0$
	- 3) An intermediate transition region around $b_T \sim 1/Q_0$ where b_T -dependence is reasonably well-described by perturbative collinear factorization, but is not as isolated from non-perturbative effects as region 2.

Ideally, the **intermediate region** should be described by a **physically motivated model** that interpolates between the TMD and the collinear regions

Aslan, Boglione, Gonzalez-Hernandez,Rainaldi, Rogers, Simonelli, Phys.Rev.D 110 (2024) 7, 074016

- Construct a smooth and continuous parametrization of the TMD that directly interpolates between perturbative and non-perturbative regimes
- Impose the integral relation on this parametrization

$$
f(x) = \int d^2 \mathbf{k_T} f(x, \mathbf{k_T})
$$

- **Avoid intrusion of the non-perturbative model in the kinematical region where the** behavior of the TMD should be dominated by perturbative physics
- \blacksquare Make sure that the TMD converges fast enough to its perturbative tail at large k_T
- **Ensure a reliable physical interpretation of the extracted TMD**

Aslan, Boglione, Gonzalez-Hernandez,Rainaldi, Rogers, Simonelli, Phys.Rev.D 110 (2024) 7, 074016

- Construct a smooth and continuous parametrization of the TMD that directly interpolates between perturbative and non-perturbative regimes
- Impose the integral relation on this parametrization

$$
f(x) = \int_{req} d^{2} \mathbf{k}_{\mathbf{T}} f(x, \mathbf{k}_{\mathbf{T}}; \mu_{Q}, \mu_{Q}^{2}) + \Delta + p.s.
$$

- \blacksquare Avoid intrusion of the non-perturbative model in the kinematical region where the behavior of the TMD should be dominated by perturbative physics
- \blacksquare Make sure that the TMD converges fast enough to its perturbative tail at large k_T
- **Ensure a reliable physical interpretation of the extracted TMD**

Aslan, Boglione, Gonzalez-Hernandez,Rainaldi, Rogers, Simonelli, Phys.Rev.D 110 (2024) 7, 074016

Aslan, Boglione, Gonzalez-Hernandez,Rainaldi, Rogers, Simonelli, Phys.Rev.D 110 (2024) 7, 074016

You fit this ...

Aslan, Boglione, Gonzalez-Hernandez,Rainaldi, Rogers, Simonelli, Phys.Rev.D 110 (2024) 7, 074016

… and you postdict this

The role of Jlab 22

- How does QCD manifest itself in the "intermediate region"?
- Jlab 22 experimental data will allow a reliable separation between TMD and collinear regimes, and a detailed exploration of the intermediate region.
- JLab22 measurements will help us to assess energy and transverse momentum ranges which are crucial to improve the current understanding of QCD in terms of factorization theorems, and shed light on the hadronization mechanism

TMD-Affinity@JLab22

U Very high statistics and fine binning will improve the 3D maps of hadron structure

TMD region will be accessible (large Q, large z, **small PT**)

- **Collinear region** will be accessible (large Q, moderate z, **large P_T**)
- A unique feature of Jlab22 is that it will offer an unprecedented insight onto the **central region,** which cannot be explored in any other SIDIS experiment

Boglione, Prokudin, Yushkevych, in preparation

Collinear-Affinity@JLab22

- **U** Very high statistics and fine binning will improve the 3D maps of hadron structure
- **TMD region** will be accessible (large Q, large z, **small PT**)
- **Collinear region** will be accessible (large Q, moderate z, **large PT**)
- A unique feature of Jlab22 is that it will offer an unprecedented insight onto the **central region,** which cannot be explored in any other SIDIS experiment

Boglione, Prokudin, Yushkevych, in preparation

Central-Affinity@JLab22

- **U** Very high statistics and fine binning will improve the 3D maps of hadron structure
- **TMD region** will be accessible (large Q, large z, **small PT**)
- **Collinear region** will be accessible (large Q, moderate z, **large PT**)
- A unique feature of Jlab22 is that it will offer an unprecedented insight onto the **central region,** which cannot be explored in any other SIDIS experiment

Boglione, Prokudin, Yushkevych, in preparation

TMD-Affinity@JLab12

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk,Pitonyak, Prokudin, Sato, Scalyer, HEP 04 (2022) 084

TMD-Affinity@EIC

General conclusions

- **Phenomenological studies of TMD factorization have entered a high precision hera.** Many aspects of the interplay between perturbative and non-perturbative contributions are now better understood
- Some issues remain open and need further investigation, especially as far as the phenomenological application of factorization theorems is concerned:
	- \star Hard to avoid non-perturbative models leeks into perturbative regions (\rightarrow HSO)
	- \star Hard to work in b_T space where we loose phenomenological intuition
	- \star F.T. involves integration of an oscillating function over b_T up to infinity: upon integration one loses track of "small b_T " and "large b_T ".

■ Simultaneous fits of SIDIS, Drell-Yan and e+e- annihilation data are very valuable, BUT they should be performed within consistent and solid frameworks, to allow for a reliable interpretation of the fit outcomes.

 \mathbf{r}

Conclusions@Jlab22

■ :Jlab22 can have a considerable impact on our understanding of TMD physics

- JLab22 measurements will help us to assess energy and transverse momentum ranges which are crucial to improve the current understanding of QCD in terms of factorization theorems, and shed light on the hadronization mechanism
- Jlab 22 experimental data will allow a reliable separation between TMD and collinear regimes
- A unique feature of JLab22 is that it will allow a detailed exploration of the intermediate region, where the transition between perturbative and non-perturbative regimes take place

Factorization

Resummation / TMD evolution

$$
\frac{1}{\sigma_0} \frac{d\sigma}{dQ^2 dy dq_T^2} = \int \frac{d^2 \mathbf{b}_T e^{i\mathbf{q}_T \cdot \mathbf{b}_T}}{(2\pi)^2} \sum_j e_j^2 W_j(x_1, x_2, b_T, Q) + Y(x_1, x_2, q_T, Q)
$$

Y = $\sigma^{\text{FO}} - \sigma^{\text{ASY}}$

- The W term is designed to work well at low and moderate q_T , when $q_T \ll Q$. (Notice that W is devised to work down to $q_T \sim 0$, however collinear-factorization works up to q_T > M; therefore, TMD-factorization and collinear-factorization can be simultaneously applied only when q_T >> M).
- The W term becomes unphysical at larger q_T , when $q_T \ge Q$, where it becomes negative (and large).
- The Y term corrects for the misbehavior of W as q_T gets larger, providing a consistent (and positive) q_T differential cross section.
- \blacksquare The Y term should provide an effective smooth transition to large q \blacksquare , where fixed order perturbative calculations are expected to work.

SIDIS - Y factor

Boglione, Gonzalez, Melis, Prokudin, JHEP 02 (2015) 095

The Y factor should not be neglected

The Y factor is very large (as large as the cross section itself) even at low q_T

However, it could be affected by large theoretical uncertainties

$$
\sigma^{ASY} = Q^2/q_T^2 [A Ln(Q^2/q_T^2) + B + C]
$$

TMD regions

Affinity

Phase space in rapidity yh of produced hadron, with for TMD, collinear, central and target regions indicated.

The legends show the percentage of all bins with corresponding affinity above 5%

$$
y_h = \frac{1}{2} \log \left(\frac{P_h^+}{P_h^-} \right)
$$

EIC and COMPASS offer little access to the central region

The very high statistics of Jlab 22 will be a magnifying glass on the central region

Possible issues ...

■ With the new prescription the Y factor is "tamed" However this comes at a price …

The TMD scheme is now exceedingly flexible

- ➔ Large number of unknown functions
- ➔ Large number of free parameters
- ➔ Hard to find the true minimum of the fit
- ➔ Computing time
- Difficult to keep balance between simplicity of parameterization and full consistency of the TMD scheme