Isolated meson electroproduction at high transverse momentum with 22 GeV electrons

Carl E. Carlson William & Mary

2ND WORKSHOP SCIENCE AT THE LUMINOSITY FRONTIER: JEFFERSON LAB AT 22 GEV (LNF-INFN 2024)

09 December—13 December 2024, Frascati, Italy

Based on old and new work with Andrei Afanasev and Christian Wahlquist

Topic: Semi-Exclusive Deep Inelastic Scattering

 $e + p \rightarrow e +$ meson + *X*

- Especially: Isolated mesons (i.e., not part of a jet)
- Mostly: Calculated perturbatively.
- Why isolated pions/mesons?
	- May be dominant process at highest k_{\perp} .
	- Measure high-x quark distributions.
	- "Designer currents": pick flavor of meson to select flavor of quark.
	- Basic subprocess same as in Generalized Parton Distributions (GPD's)

with mesons at high k_1 and mostly pions.

- Introduction
- Three processes (two for contrast plus one to focus on)
	- Fragmentation processes
	- Soft processes proceeding via Vector Meson Dominance (VMD)
	- Higher twist hard processes, yielding high k_{\perp} isolated mesons.
- Some cross section plots
- Summary

- Basic cross section calculation, $\sigma = \int dx_1 d\hat{t} dz G_{a/p}(x_1)$ *dσ dt*
- Where
	- $G_{a/p}$ = distribution function for *a* in *p*
	- $d\hat{\sigma}/d\hat{t}$ = subprocess cross section
	- $D_c^{\pi}(z)$ = fragmentation function $\frac{\pi}{c}(z)$
- Two generic subprocesses,
	- "QCD Compton," $\gamma^* + q \rightarrow q + g$
	- "Gluon fusion," $\gamma^* + g \rightarrow q + \bar{q}$

4

more fragmentation

- Part is easily calculable perturbatively, e.g., for QCD Compton, *dσ dt* = 8*παα^s* $\frac{8\pi\alpha\alpha_s}{3(\hat{s} + Q^2)^2}$ { $-\frac{\hat{u}}{\hat{s}}$ − *s* \hat{u} $+2$ \mathcal{Q}^2 *su* ̂̂ $(\hat{t} - \hat{k}_{\perp}^2)$ ⊥) \int
- Then: $Get G(x)$ from analyses of DIS, Get Get $D(z)$ from analyses of $D(z)$ from analyses of $e^+e^- \rightarrow$ hadrons
- Show results after discussion of soft processes.

soft processes, a.k.a. VDM

- Approximate soft processes by vector meson dominance: Photon enters but fluctuates to a rho or omega or phi or excitations thereof.
- Interacts as hadron. Not calculable ab initio. Amplitude obtained using various relations.
- E.g.,

$$
f(\gamma p \to \pi^+ X) \Big|_{\rho \text{MD}} = \frac{e}{f_\rho} f(\rho^0 p \to \pi^+ X), \quad \text{(for } q^2 = 0)
$$

and rho decay constant f_{ρ} got from $\Gamma(\rho\to e^+e^-)$.

 $\frac{1}{\rho}$ got from $\Gamma(\rho \rightarrow e^+ e^-)$

Parameterization of hadronic process.

- Still more stuff:
	- Don't have ρ^0 beams. Use π^+ or π^- data instead, for example $\ \pi^+... \to \pi^0...$
	- Bosetti et al. (e.g.) have semi-exclusive π in, π out data at many angles but limited energy range.
	- Lots of data on $pp \rightarrow \pi X$ at 90° CM. Where data overlap, pion σ about 2/3 proton σ
	- So get angular distribution from pion data, and energy dependence of pp data. Also estimate contributions from other VM (ϕ , ω , excitations).

(Formulas in ACW 2000. See also parameterization by Szczurek, Uleshchenko, and Speth.)

A plot of things so far

close to on-shell).

8

(Ignore long dash and dotted curves for now)

• Soft (i.e., VMD) pretty big for almost real photons.

• Some plots with final electron not observed (i.e., photons generally very

- Notes: For $\gamma^* p \to \pi X$ directly, *dσ dx*1*dt* $=$ \sum *a* $G_{\alpha/p}(x_1)$ *dσ dt*
- Special note: x_1 is fixed by observable quantities
- Subprocess Mandelstam variables $\hat{s} = (p_1 + q)^2, \quad \hat{t} = t = (q - k)^2,$ 2, $\hat{t} = t = (q - k)^2$, \hat{u}
- Overall and observable Mandelstam variables $s = (p + q)^2$, $t = (q - k)^2$, $u = (p - k)^2$

• with $p_1 = x_1 p$, find $x_1 = -t / (s + u + Q^2)$

Direct process $\gamma(q)$ | t $\pi(k)$ X \boldsymbol{p} t X, p **High transverse momentum pion Recoiling quark**

Some references: Berger, Brodsky; Baier, Grozins; Brandenberg, Khoze, Müller; Hyer; Milana, Wakely, Wahlquist, Afanasev, me

$$
p = (p_1 - k)^2
$$

Direct process, page 2

function. Given by "distribution amplitude" $\phi_{\pi}(y)$.

• For π^+ (e.g.), initial up quark dominates, so \sum_{quarks} needs only one term. *π*+ ∑quarks

• Subprocess calculable using pQCD and (arguably) known pion $q\bar{q}$ Fock component wave

Direct process, side remarks

 $q_G^2 \approx \frac{1}{2} q^2$, \Rightarrow JLab SEDIS as good as pion FF at $\frac{2}{G}$ \approx 1 9 $q_{\overline{G}}$

• For VMD at $Q^2 \neq 0$, propagator suppresses $\rho M D$ contributions by $(m_\rho^2/(m_\rho^2 + Q^2))^2 < 1/7$ for $Q^2 \approx 1$ GeV².

• $\frac{\hat{s}}{g} \to \frac{\hat{s}}{g}$ (1-y)k $q_G^2 = (1 - y)\hat{s} = x_1(1 - y)s \approx \frac{1}{6}s \approx 8 \text{ GeV}^2$ (for 22 GeV JLab) $G^{2} = (1 - y)\hat{s} = x_{1}(1 - y)s \approx$ 1 6 $s \approx 8$ GeV²

Pion form factor uses same distribution amplitude and same I_{π} integral, and $q_G^2 \approx \frac{1}{2} q^2$, \Rightarrow JLab SEDIS as good as pion FF at $Q^2 = 72$ GeV²

−1 $\tau = \nu^2/Q^2$

Laying on some formulas • Write full cross section as flux factor time cross section *e(l)*

for virtual photon semi-inclusive scattering, $\gamma^* + p \to \pi + X$,

$$
E'\omega_{\pi} \frac{d^6 \sigma}{d^3 l' d^3 p_{\pi}} = \frac{\alpha}{2\pi^2} \frac{|\vec{q}|}{EQ^2} \frac{1}{1 - \epsilon}
$$

$$
\times \omega_{\pi} \frac{d}{d^3 p_{\pi}} \left\{ \sigma_T + \epsilon \sigma_L + \epsilon \cos(2\phi_h) \sigma_{TT} + \sqrt{2\epsilon (1+\epsilon)} \cos \phi_h \sigma_{LT} - (2\lambda_e) \sqrt{2\epsilon (1-\epsilon)} \sin \phi_h \sigma_L' \right\}
$$

• where ϵ is the usual $\epsilon = (1 + 2\tau(1 + \tau)\tan^2(\theta_e/2))$ ⁻¹ with

e(l')

p(p)

q

Plot of "sub-cross sections"

 \bullet

Comparison plots, at several Q^2

Recoiling mass and *x* plots

• Plots show recoiling (not the isolated pion) hadronic mass, and also *x*.

• For 22 GeV, significant window where we are out of the resonance region.

-
-

Recoiling mass and *x* plots

• Plots show recoiling (not the isolated pion) hadronic mass, and also *x*.

• For 22 GeV, significant window where we are out of the resonance region.

-
-

Recoiling mass and *x* plots

• Plots show recoiling (not the isolated pion) hadronic mass, and also *x*.

• For 22 GeV, significant window where we are out of the resonance region.

-
-

Final remarks

- It appears that direct pion production, a hard higher twist process, can be seen above the soft "background" at high transverse momentum at JLab energies.
- Could be used to learn high-*x* form of quark pdfs, with ability to select flavor of quark by choosing flavor of pion. May also learn the (1/momentum fraction) moment of pion distribution amplitude, *Iπ*
- Higher order processes could affect high $p_{π⊥}$ production, for example radiative corrections or initial transverse momentum effects upon rapidly falling cross section. See comments by J. Qiu.
- Side note: The basic subprocess for direct meson production is the same as for quasi-elastic production of mesons, in the region where that production can be described by generalized parton distributions.
	- **The end**
		- 18

Past the end

Alternative cross section formula

- For $e + p \rightarrow e + \pi + X$, without target polarization, in terms of structure functions, *d*6 *σ dxdydψdzdϕhdp*² *π*⊥ = *α*2 $2x_BQ^2(1 - x_B)$ *y* $\frac{1}{1-\epsilon}\left(1+\right)$ *mp ν*) $\times\left\{F_{UU,T}+\epsilon F_{UU,L}+\epsilon\cos(2\phi_h)F_{UU}^{\cos2\phi_h}+\sqrt{2\epsilon(1+\epsilon)}\cos\phi_hF_{UU}^{\cos\phi_h}-h\sqrt{2\epsilon(1-\epsilon)}\sin\phi_hF_{LU}^{\sin\phi_h}\right\}$
- (θ = electron scattering angle in lab, ν = electron energy loss in lab, ϕ = azimuthal angle of pion-photon plane relative to electron scattering plane. Other new notation is exercise for viewer or reader.)

$$
\frac{1}{\epsilon} \left(1 + \frac{m_p}{\nu} \right)
$$

Subprocess cross sections

dσ dt = 128 27 $\pi^2 a \alpha^2 I_\pi^2$

$$
I_{\pi}^{2}\left(\frac{e_{1}}{\hat{s}}+\frac{e_{2}}{\hat{u}}\right)^{2}\frac{\hat{s}^{2}+\hat{u}^{2}}{\hat{s}^{2}(-t)}
$$

