DOE contracts: DE-SC0007981 DE-AC05-06OR23177

Probing the transverse momentum of Longitudinally Polarized quarks

Matteo Cerutti

MAP Collaboration

MAP Collaboration, arXiv:2409.18078

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV

Frascati, 12/09/2024

2

$g_1^q(x, \mathbf{k}_\perp) = q^+ - q^-$

- How the polarization of the proton reflects on its internal structure in 3 dimensions?
- How the polarization of the quark distorts their transverse momentum?
- Do quarks with spin parallel to the proton's spin have smaller or larger transverse momentum?

Analysis of longitudinally polarized process

SIDIS

 $\ell^{\rightleftharpoons}(l) + N^{\leftrightarrows}(P) \to \ell(l') + h(P_h) + X$

DOUBLE SPIN ASYMMETRY

$$A_1 = \frac{d\sigma^{\rightarrow\leftarrow} - d\sigma^{\rightarrow\rightarrow} + d\sigma^{\leftarrow\rightarrow} - d\sigma^{\leftarrow\leftarrow}}{d\sigma^{\rightarrow\leftarrow} + d\sigma^{\rightarrow\rightarrow} + d\sigma^{\leftarrow\rightarrow} + d\sigma^{\leftarrow\leftarrow}}$$

A. Bacchetta et al., Phys.Rev.D 70 (2004), 117504

M. Diehl and S. Sapeta, Eur. Phys. J. C 41, 515 (2005)

TMD factorization

$$A_{1}(x, z, Q, |\boldsymbol{P}_{hT}|) = \frac{\sum_{a=q, \overline{q}} e_{a}^{2} \int_{0}^{+\infty} d|\boldsymbol{b}_{T}|^{2} J_{0} \left(\frac{|\boldsymbol{b}_{T}||\boldsymbol{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\boldsymbol{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\boldsymbol{b}_{T}|^{2}, Q)}{\sum_{a=q, \overline{q}} e_{a}^{2} \int_{0}^{+\infty} d|\boldsymbol{b}_{T}|^{2} J_{0} \left(\frac{|\boldsymbol{b}_{T}||\boldsymbol{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\boldsymbol{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\boldsymbol{b}_{T}|^{2}, Q)}$$

+ Large energy scale $Q^2 \gg M^2$

• Small transverse momentum $q_T^2 \ll Q^2$

 \Rightarrow Experimental observables in terms of universal objects

TMD factorization

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\overline{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0} \left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\overline{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0} \left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

MAP Collaboration, Bacchetta et al., JHEP 10 (2022)

- + Large energy scale $Q^2 \gg M^2$
- Small transverse momentum $q_T^2 \ll Q^2$

⇒ Experimental observables in terms of universal objects

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

- ► Proportional to f_{NP}^{MAP22}
- ► x-dependent

 $k_{norm}(x) \rightarrow \int d^2 \mathbf{k}_{\perp} g_{NP} = 1$

$$\omega_{1}(x) \rightarrow \text{crucial to satisfy } |g_{1}| \leq f_{1}$$

$$\omega_{1}(x) \rightarrow +\infty \Leftrightarrow g_{1}(k_{T}) = f_{1}(k_{T})$$

$$\omega_{1}(x) \ll 1 \Leftrightarrow g_{1}(k_{T} \sim 0) > f_{1}(k_{T} \sim 0)$$

7

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

- ► Proportional to f_{NP}^{MAP22}
- x-dependent

 $k_{norm}(x) \rightarrow \int d^2 {\bm k}_\perp g_{NP} = 1$

 $\omega_1(x) \rightarrow$ crucial to satisfy $|g_1| \leq f_1$

At $Q_0 = 1 \, GeV$, the ratio g_1/f_1 reads: $\frac{g_1(x, \mathbf{k}_{\perp}^2, Q_0)}{f_1(x, \mathbf{k}_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} e^{-\frac{1}{\omega_1(x)}}$ $\frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{1}{k_{norm}(x)} \le 1 \longrightarrow \qquad \omega_1(x) = f_{pos.}(x) + N_{1g}^2 \frac{(1-x)^{\alpha_{1g}^2 x^{\sigma_{1g}}}}{(1-x)^{\alpha_{1g}^2 x^{\sigma_{1g}}}}$

Airapetian et al.	(HERMES),	Phys. Rev. D	(2019)
-------------------	-----------	--------------	--------

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \to \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
HERMES $(d \to K^+)$	46	1.26	1.25
HERMES $(d \to K^-)$	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \rightarrow \pi^{-})$	53	0.86	0.86
Total	291	1.11	1.09

- MAP22 kinematic cuts
- 291 fitted data points
- Perturbative order: NLO

- Collinear PDFs: NNPDFPol, MMHT, DSS
- Perturbative accuracy: NLL & N2LL
- 3 fitted parameters
- Error analysis with bootstrap method

Highest possible since C^g known up to NLO

Gutiérrez-Reyes et al., Phys. Lett. B (2017)

10

More data are needed: present

CLAS12

Hall C

+ SoLID (?)

New experimental data: intermediate-large-x region

small exp. errors!

More data are needed: future

SCIENCE AT THE LUMINOSITY FRONTIER: JEFFERSON LAB AT 22 GE

LABORATORI NAZIONALI DI FRASCATI – INFN (ITALY) DECEMBER 9-13, 2024

Calculation of A_1 asymmetry in JLab22 kinematics

+ study of ρ meson subtraction

see Harut's talk

JLab22 white paper, Eur.Phys.J.A 60 (2024) 9, 173

Target: proton

Final state: pion(-)

$$x = 0.3$$

 $Q^2 = 4 \text{ GeV}^2$
 $z = 0.45$

ρ -subtraction exercise

see Harut's talk

"Effective" subtraction of ρ -meson (diffractive) contribution

Conclusions and Outlook

- We can extract the **transverse momentum distribution** $g_1(x, k_{\perp})$ of longitudinally polarized quarks in longitudinally polarized nucleons
- We impose to the validity of **positivity constraints** *a priori*
- Current experimental errors from HERMES are **poorly constraining** the $g_1(x, k_{\perp})$
- JLAB22: new experimental data with (expected) high precision

O study of the extension of MAP extraction at larger P_{hT}

O study of fit "effectively" excluding **diffractive** ρ -mesons