MAPTMD24: First Global Flavor **Dependent TMD extractions**

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV

Istituto Nazionale di Fisica Nucleare

JHEP 08 (2024) 232

Lorenzo Rossi

MAP Collaboration

UNIVERSITÀ **DEGLI STUDI DI MILANO**

MAPTMD24: First Global Flavor **Dependent TMD extractions**

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV

Istituto Nazionale di Fisica Nucleare

JHEP 08 (2024) 232

Lorenzo Rossi

MAP Collaboration

UNIVERSITÀ **DEGLI STUDI DI MILANO**

$\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$

 $\times \left(\frac{\zeta}{\mu_b^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{Q_0}\right]$

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

Matching coeff. (perturbative calculable)

 $\hat{f}_{1}^{q}(x_{B}, \mathbf{b}_{T}; \mu_{F}, \zeta_{F}) = \left[C \otimes f_{1}\right](x_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{h}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$

 $\times \left(\frac{\zeta}{\mu^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{O_0}\right]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x,\mathbf{b}_T;\zeta,Q_0)$

Matching coeff. (perturbative calculable)

 $\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$

 $\times \left(\frac{\zeta}{\mu_{h}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{\zeta}{O_{0}}\right]$

Collins, "Foundations of Perturbative QCD"

Collinear PDFs (previous fit)

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

Matching coeff. (perturbative calculable)

Matching coeff. (perturbative calculable)

Collins-Soper kernel

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

TMD factorization — Drell-Yan process

TMD factorization — Drell-Yan process

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{\sigma} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{\sigma} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{\sigma} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

3

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

3

$$F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A}x_{B}\mathcal{H}^{DY}(Q; \mu) \sum_{a} c_{a}(Q^{2})$$

W term

photon

$$F_{UU,T}(x \, . \, z; \mu_F, \mathbf{P}_{hT}^2, Q^2) = x \sum_a H_{UU,T}^a (Q^2, \mu^2) \int d^2$$

$$+Y_{UU,T}(Q^2,\mathbf{P}_{hT}^2)+\mathcal{O}(M^2)$$

$J^2 \mathbf{k}_{\perp} \mathbf{d}^2 \mathbf{P}_{\perp} f_1^{\mathbf{a}}(x, \mathbf{k}_{\perp}^2; \mu^2) D_1^{\mathbf{a} \to \mathbf{h}}(z, \mathbf{P}_{\perp}^2; \mu^2) \delta^{(2)}(z\mathbf{k}_{\perp} - \mathbf{P}_{hT} + \mathbf{P}_{\perp})$

$^{2}/Q^{2})$

W Term

$$+Y_{UU,T}(Q^2, \mathbf{P}_{hT}^2) + \mathcal{O}(M^2)$$

$^{2}/Q^{2})$

W Term

$$^{2}/Q^{2})$$

• The <u>W term</u> dominates in the region where $q_T \ll Q$

• The <u>W term</u> dominates in the region where $q_T \ll Q$

- The Y term has been excluded in the MAP analysis

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2013 JHEP 11 (2013) 194	Parton Model	HERMES data			1538	1.63
Pavia 2017 JHEP 06 (2017) 081	NLL				8059	1.55
Pavia 2019 JHEP 07 (2020) 117	N ³ LL	X			353	1.02
SV 2019 <i>JHEP</i> 06 (2020) 137	N ³ LL				1039	1.06
MAPTMD22 <i>JHEP</i> 10 (2022) 127	N ³ LL				2031	1.06
ART23 <i>JHEP</i> 10 (2022) 127	N ³ LL+				627	0.96
MAPTMD24 <i>JHEP</i> 08 (2024) 232	N ³ LL				2031	1.08

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2013 JHEP 11 (2013) 194	Parton Model	HERMES data			1538	1.63
Pavia 2017 JHEP 06 (2017) 081	NLL				8059	1.55
Pavia 2019 JHEP 07 (2020) 117	N ³ LL				353	1.02
SV 2019 <i>JHEP</i> 06 (2020) 137	N ³ LL				1039	1.06
MAPTMD22 <i>JHEP</i> 10 (2022) 127	N ³ LL				2031	1.06
ART23 <i>JHEP</i> 10 (2022) 127	N ³ LL+				627	0.96
MAPTMD24 <i>JHEP</i> 08 (2024) 232	N ³ LL				2031	1.08

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2013 JHEP 11 (2013) 194	Parton Model	HERMES data	X	X	1538	1.63
Pavia 2017 JHEP 06 (2017) 081	NLL				8059	1.55
Pavia 2019 JHEP 07 (2020) 117	N ³ LL				353	1.02
SV 2019 <i>JHEP</i> 06 (2020) 137	N ³ LL				1039	1.06
MAPTMD22 <i>JHEP</i> 10 (2022) 127	N ³ LL				2031	1.06
ART23 <i>JHEP</i> 10 (2022) 127	N ³ LL+				627	0.96
MAPTMD24 <i>JHEP</i> 08 (2024) 232	N ³ LL				2031	1.08

Flavor Dependence

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2013 JHEP 11 (2013) 194	Parton Model	HERMES data	X	X	1538	1.63
Pavia 2017 JHEP 06 (2017) 081	NLL				8059	1.55
Pavia 2019 JHEP 07 (2020) 117	N ³ LL				353	1.02
SV 2019 <i>JHEP</i> 06 (2020) 137	N ³ LL				1039	1.06
MAPTMD22 <i>JHEP</i> 10 (2022) 127	N ³ LL				2031	1.06
ART23 <i>JHEP</i> 10 (2022) 127	N ³ LL+				627	0.96
MAPTMD24 <i>JHEP</i> 08 (2024) 232	N ³ LL				2031	1.08

MAPTMD24 =

Global Extraction

+

Flavor Dependence

MAP Collaboration, JHEP 08 (2024)

MAPTMD24 extraction

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

MAPTMD24 extraction

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

Drell-Yan data 484

MAPTMD24 extraction

Drell-Yan data 484 SIDIS data

1547

MAP Collaboration, JHEP 08 (2024)

MAPTMD24 extraction

- Perturbative accuracy: N³LL

MAP Collaboration, JHEP 08 (2024)

MAPTMD24 extraction

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

7

- Perturbative accuracy: N³LL

MAPTMD24 extraction

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

NNPDF31NNLO MAPFF10NNLO

7

- Perturbative accuracy: N³LL

NNPDF31NNLO MAPFF10NNLO

MAPTMD24 extraction

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

Full account of uncertainties from collinear sets

- Perturbative accuracy: N³LL

Flavor Dependence

MAP Collaboration, JHEP 08 (2024)

MAPTMD24 extraction

- Perturbative accuracy: N³LL
- Flavor Dependence

MAPTMD24 extraction

и, d ū, đ s (sea)

- Perturbative accuracy: N³LL
- Flavor Dependence

MAPTMD24 extraction

u, d \bar{u}, \bar{d} s(sea)

- Perturbative accuracy: N³LL
- Flavor Dependence

MAPTMD24 extraction

HERMES

JHEP 08 (2024) 232

MAPTMD24 extraction

+ deuteron target

high sensitivity to flavour dependence

JHEP 08 (2024) 232

+ deuteron target

high sensitivity to flavour dependence

COMPASS deuteron target & unidentified final state hadron

JHEP 08 (2024) 232

HERMES

+ deuteron target

high sensitivity to flavour dependence

COMPASS

HERMES

JHEP 08 (2024) 232

$e + p \rightarrow e' + \pi^+ + X$ $e + p \rightarrow e' + \pi^- + X$ $e + p \rightarrow e' + K^+ + X$ $e + p \rightarrow e' + K^- + X$

+ deuteron target

deuteron target & unidentified final state hadron

low sensitivity to flavour dependence

high sensitivity to flavour dependence

COMPASS

HERMES

Drell-Yan

- - $q\bar{q}$ in the initial state

$e + p \rightarrow e' + \pi^+ + X$ $e + p \rightarrow e' + \pi^- + X$ $e + p \rightarrow e' + K^+ + X$ $e + p \rightarrow e' + K^- + X$

+ deuteron target

deuteron target & unidentified final state hadron

low sensitivity to flavour dependence

high sensitivity to flavour dependence

COMPASS

HERMES

- **Drell-Yan** $q\bar{q}$ in the initial state

JHEP 08 (2024) 232

$e + p \rightarrow e' + \pi^+ + X$ $e + p \rightarrow e' + \pi^- + X$ $e + p \rightarrow e' + K^+ + X$ $e + p \rightarrow e' + K^- + X$

+ deuteron target

deuteron target & unidentified final state hadron

low sensitivity to flavour dependence

lowest sensitivity to flavour dependence

- Perturbative accuracy: N³LL

Flavor Dependence

MAP Collaboration, JHEP 08 (2024)

MAPTMD24 extraction

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

- Perturbative accuracy: N³LL
- Flavor Dependence

MAPTMD24 extraction

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

		N^3	LL
Data set	N_{dat}	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27

JHEP 08 (2024) 232

MAPTMD24 extraction - Results χ^2 1.08 data

	$ m N^3LL$		
Data set	N_{dat}	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27

		N^3	LL
Data set	N_{dat}	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27

		N^3	LL
Data set	N_{dat}	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27

JHEP 08 (2024) 232

		N^3	LL
Data set	N_{dat}	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27

JHEP 08 (2024) 232

		\mathbb{N}^3	LL
Data set	$N_{\rm dat}$	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27
			*

Very good agreement

Quite good agreement

JHEP 08 (2024) 232

The sea is the least constrained

The sea is the least constrained

JHEP 08 (2024) 232

JHEP 08 (2024) 232

The favoured is better constrained than the unfavoured one

MAPTMD24 extraction - TMD FFs

JHEP 08 (2024) 232

MAPTMD24 extraction - TMD FFs

Strong differences between different hadron fragmentations!

JHEP 08 (2024) 232

MAPTMD24 extraction - Scatter plots

JHEP 08 (2024) 232

What's next?

A lots of work still to do...

What's next?

Conclusions and outlook

MAPTMD24 is the *first flavour dependent* extraction of unpolarized quarks TMDs in the proton from a **global** fit

Conclusions and outlook

quarks TMDs in the proton from a **global** fit

We find *significant* differences between the flavors in the *TMD PDFs*.

Conclusions and outlook

MAPTMD24 is the *first flavour dependent* extraction of unpolarized

quarks TMDs in the proton from a global fit

We find *significant* differences between the flavors in the *TMD PDFs*.

TMD FFs.

Conclusions and outlook

MAPTMD24 is the **first flavour dependent** extraction of unpolarized

We find *significant* differences between different final hadrons in the

Conclusions and outlook

quarks TMDs in the proton from a **global** fit

TMD FFs.

MAPTMD24 is the *first flavour dependent* extraction of unpolarized

We find *significant* differences between the flavors in the *TMD PDFs*.

We find *significant* differences between different final hadrons in the

We find a weak signal between different flavors in the same final hadron.

Conclusions and outlook

quarks TMDs in the proton from a global fit

TMD FFs.

MAPTMD24 is the *first flavour dependent* extraction of unpolarized

We find *significant* differences between the flavors in the *TMD PDFs*.

We find *significant* differences between different final hadrons in the

We find a weak signal between different flavors in the same final hadron.

Future SIDIS data in identified hadrons will be fundamental for a full description

High Energy Drell-Yan

High Energy Drell-Yan

The description improves at high orders

MAPTMD22: Normalization of SIDIS <u>SIDIS</u>

High Energy Drell-Yan

The description improves at high orders

HERMES

Strange behaviors at higher orders

COMPASS multiplicities (one of many bins)

COMPASS multiplicities (one of many bins)

COMPASS multiplicities (one of many bins)

Data/Prediction

COMPASS multiplicities (one of many bins)

For different orders the discrepancy amounts to a nearly <u>constant</u> factor

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

$$\frac{d\sigma}{dxdQdz} = \int \frac{dP_{hT}}{dxdQ} \frac{dQ}{dxdQ}$$

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

 $d\sigma$ $\frac{\partial dz dP_{hT}}{\partial dz dP_{hT}}$

SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

$$\frac{d\sigma}{dxdQdz} = \int \frac{dP_{hT}}{dxdQ} \frac{dQ}{dxdQ}$$

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dO dz dP_{hT}} / \frac{d\sigma}{dx dO}$

 $\frac{d\sigma}{OdzdP_{hT}} \stackrel{?}{=} \int \frac{dP_{hT}}{W-term}$

 $M(x, z, P_{hT}, Q)$ SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

$$\frac{d\sigma}{dxdQdz} = \int \frac{dP_{hT}}{dxdQdzdP_{hT}} \frac{d\sigma}{dxdQdzdP_{hT}} \stackrel{?}{=} \int \frac{dP_{hT}}{dV} W - term$$

$$\frac{d\sigma}{dxdzdQ}\Big|_{\text{LO}} = \simeq \int dq_T W\Big|_{\text{NLL}} \propto f_1^q(x, Q) D_1^{q \to h}(z, Q)$$

$$P = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$$

 $M(x, z, P_{hT}, Q)$ SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

$$\frac{d\sigma}{dxdQdz} = \int \frac{dP_{hT}}{dxdQdzdP_{hT}} \stackrel{?}{=} \int \frac{dP_{hT}}{dP_{hT}} W-term$$

$$\frac{d\sigma}{dxdzdQ}\Big|_{\text{LO}} = \simeq \int dq_T W\Big|_{\text{NLL}} \propto f_1^q(x, Q) D_1^{q \to h}(z, Q)$$

$$\int dq_T W \Big|_{\text{NNLL}} \neq \frac{d\sigma}{dx dz dQ} \Big|_{\text{NLO}}$$

$$P = \frac{d\sigma}{dxdQdzdP_{hT}} / \frac{d\sigma}{dxdQ}$$

 $M(x, z, P_{hT}, Q)$ SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

$$\frac{d\sigma}{dxdQdz} = \int \frac{dP_{hT}}{dxdQdzdP_{hT}} \stackrel{?}{=} \int \frac{dP_{hT}}{dP_{hT}} W\text{-term}$$

$$\frac{d\sigma}{dxdzdQ}\Big|_{\text{LO}} = \left. \simeq \int dq_T W \right|_{\text{NLL}} \propto f_1^q(x, Q) D_1^{q \to h}(z, Q)$$

At higher orders something is missing (Y-term? Power corrections?)

$$\int dq_T W \Big|_{\text{NNLL}} \neq \frac{d\sigma}{dx dz dQ} \Big|_{\text{NLO}}$$

$$P = \frac{d\sigma}{dxdQdzdP_{hT}} / \frac{d\sigma}{dxdQ}$$

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

SIDIS multiplicity

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

 $w(x, z, Q) = \frac{d\sigma}{dx dQ dz} / \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}$

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dO dz dP_{LT}} / \frac{d\sigma}{dx dO}$

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dO dz dP_{hT}} / \frac{d\sigma}{dx dO}$

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

 $w(x, z, Q) = \frac{d\sigma}{dx dQ dz} \bigg/ \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}$

 $M(x, z, P_{hT}, Q) = w(x, z, Q) \frac{\omega}{dx dQ dz dP_{hT}}$ $d\sigma$ dxdQ

MAP Collaboration, JHEP 10 (2022)

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dO dz dP_{hT}} / \frac{d\sigma}{dx dO}$

Collinear SIDIS cross section

 $d\sigma$ dxdQdz

 $w(x, z, Q) = \frac{d\sigma}{dx dQ dz} \bigg/ \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}$

Fitting parameters independent

	N ³ LL			
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	χ^2_0
Tevatron total	71	1.10	0.07	1.17
LHCb total	21	3.56	0.96	4.52
ATLAS total	72	3.54	0.82	4.36
CMS total	78	0.38	0.05	0.43
PHENIX 200	2	2.76	1.04	3.80
STAR 510	7	1.12	0.26	1.38
DY collider total	251	1.37	0.28	1.65
$E288 \ 200 \ GeV$	30	0.13	0.40	0.53
E288 300 GeV	39	0.16	0.26	0.42
E288 400 GeV	61	0.11	0.08	0.19
E772	53	0.88	0.20	1.08
E605	50	0.70	0.22	0.92
DY fixed-target total	233	0.63	0.31	0.94
HERMES total	344	0.81	0.24	1.05
COMPASS total	1203	0.67	0.27	0.94
SIDIS total	1547	0.70	0.26	0.96
Total	2031	0.81	0.27	1.08

Error propagation

100 Monte Carlo replicas of data

100 Monte Carlo replicas of PDFs

100 Monte Carlo replicas of FFs

Kinematic power corrections in TMD fa Alexey Vladimirov (Madrid U.) (Jul 24, 2023) Published in: JHEP 12 (2023) 008 • e-Print: 230 🗟 claim i ⊂ cite pdf 치 Ð DOI

that these problems will be resolved with the inclusion of KPCs.

actorization theorem	#3
07.13054 [hep-ph]	
C reference search	➔ 6 citations

Estimations made in sec. 5.3 demonstrate that including KPCs results in an almost constant increment of the cross-section. The magnitude of this correction depends on Q and x. For typical LHC kinematics, the correction is around 1%, while at $Q \sim 4-5$ GeV, the correction can reach 100%. Interestingly, the deficiency in normalization for the TMD factorization at low energies has been reported by multiple groups. One could expect

2405.13833

18

