

outlook: a STCF?

current e^+e^- machines

workshop on science communication: explain your field with a photo taken on the way to lunch

quark model: *q*ā mesons qqq baryons

wide variety of hadrons

Nature 160, 453–456 (1947)

from light and narrow...

overarching goal:

wide variety of hadrons

Nature 160, 453–456 (1947)

from light and narrow...

PRL 130 (2023) 5, 5

overarching goal:

wide variety of hadrons

Nature 160, 453–456 (1947)

from light and narrow...

PRL 130 (2023) 5, 5

What does not fit: Exotic hadrons

 $P_{c\bar{c}}$ -states

in $\Lambda_b \to KJ/\psi p$

PRL 122 (2019) 22, 222001

X(3872) in $B \to K J/\psi \pi \pi$ PRL 91, 262001 (2003)

overarching goal:

Nature 160, 453–456 (1947)

from light and narrow...

... at e^+e^- machines

... at e^+e^- machines

The BESIII experiment

- located at IHEP, Beijing
- operating in τ -charm region: 2 GeV – 5 GeV
- undergoing upgrades:

BEPCII accelerator

... at e^+e^- machines

The Belle II experiment

- located at KEK, Tsukuba
- successor to the B-factories, operating in bottomonium region
- world-record luminosity $4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

0

2034

[ab⁻¹] 20 10

> not a Belle II member, apologies if I misrepresent s.th.

scaling Belle precision by luminosity

not a Belle II member, apologies if I misrepresent s.th.

What we do well

$J/\psi \rightarrow \gamma \eta' \pi \pi$ - or: no such thing as enough J/ψ

PRL 95 (2005) 262001

$J/\psi \rightarrow \gamma \eta' \pi \pi$ - or: no such thing as enough J/ψ

(personal opinion: way too early for such a claim)

The $\pi_1(1600)$ in $\chi_{c1} \rightarrow \eta' \pi \pi$

Open charm decays

Charmonium(-like) states

- X, Z states through $Y \rightarrow \gamma X$, πZ , KZ_{cs}

Charmonium(-like) states

Charmonium(-like) states

Open questions

$$D_{s}^{*+}D_{s}^{*-}$$

$$D_{s}^{*+}D_{s}^{-}$$

$$T_{c\bar{c}\bar{s}\bar{s}\bar{1}}(3985) - D_{s}^{*}D_{s}^{-}$$

$$D_{s}\bar{D})^{*}$$

$$D_{s}^{+}D_{s}^{-}$$

$$D^{*}\bar{D}$$

$$D^{*}\bar{D}$$

(a) inconsistencies

(b) missing states

The elephant in the room...

$$D_{s}^{*+}D_{s}^{*-}$$

$$D_{s}^{*+}D_{s}^{-}$$

$$D_{s}^{*}D_{s}^{-}$$

$$D_{s}^{*}D_{s}^{-}$$

$$D_{s}^{*}$$

$$D_{s}^{-}$$

$$D_{s}^{*}$$

29

???

 $e^+e^- \to \overline{Z_{cs}}K$

The Z_c states

400 300 200 Displaced

 $B \rightarrow Z_c K$

are triangle singularities the solution? $1.2 \text{ GeV}^2/c^4 < M^2(K,\pi) < 2.05 \text{ GeV}^2/c^4$ GeV²/c⁴ Belle K* 254 14(Ö B Events π Ψ π $Z_{c}(4430)$ $Z_{c}(4200)$ 20 J/ψ 20 $M^{2}(J/\psi,\pi), GeV^{2}/c^{4}$ PRD 90 (2014) 11 PRD 100 (2019) 1, 011504 LHCb D^* *\|∫*

PRL 111 (2013) 13 132003 PLB 747 (2015) 410 PLB 755 (2016) 337 PLB 772 (2017) 200 EPJ C 80 (2020) 12 1179 PRD 109 (2024) 11, 116002

are triangle singularities the solution?

PRD 109 (2024) 11, 116002

The Z_c states

Radiative decays of the X(3872)

$e^+e^- \rightarrow \gamma X(3872)$

Hallelujah, an exotic hadron candidate in multiple production processes!

$B \rightarrow K X(3872)$

Radiative decays of the X(3872)

$e^+e^- \rightarrow \gamma X(3872)$

$$\frac{\Gamma_{\gamma\psi(2S)}}{\Gamma_{\gamma J/\psi}} < 0.59$$

can this be addressed with 22 GeV photons?

$B \rightarrow K X(3872)$

 $\Gamma_{\gamma\psi(2S)} < 2.1$ $\Gamma_{\gamma J/\psi}$

 $\frac{1_{\gamma\psi(2S)}}{2.46\pm0.64\pm0.29}$ $\Gamma_{\gamma J/\psi}$

Missing charmonium states

- the nature of the X(3872) is still disputed
- if it's not the $\chi_{c1}(2P)$, then where is that?
- are the $\chi_{c0}(3915)$ and $\chi_{c2}(3930)$ the $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$?
- finding the $h_c(2P)$ would be very helpful
- that is very challenging in e^+e^- : $1^{--} \rightarrow 1^{+-} J^{P+}$

if there is no ψ to populate this, cross section could be very small

 π^0 violates isospin $D^*\bar{D}$ is an open S-wave decay η, σ

Missing charmonium states

 $B \to KD^*\bar{D}$

the expected $h_c(2P)$ mass is in the ballpark of the Z_c , X(3872) \rightarrow could this be addressed with 22 GeV photons?

https://tinyurl.com/4zmajzkd

Hefei, China

detailed information on technical concepts can be found here: International Workshop on Future Tau Charm Facilities: <u>https://indico.pnp.ustc.edu.cn/event/1948/overview</u> CDR: Front. Phys. 19(1), 14701 (2024)

- energy range: 2 7 GeV
- luminosity: $> 0.5 \times 10^{35}$ cm⁻² s⁻¹
- timeline:

CME (GeV)	Lumi (ab^{-1})	Samples	σ (nb)	No. of events	Remarks
3.097	1	J/ψ	3400	3.4×10^{12}	3 trillion
3.670	1	$ au^+ au^-$	2.4	$2.4 imes 10^9$	
		$\psi(3686)$	640	6.4×10^{11}	400 billion y
3.686	1	$ au^+ au^-$	2.5	2.5×10^9	out billion ψ
		$\psi(3686) \rightarrow \tau^+ \tau^-$		$2.0 imes 10^9$	
		$D^0 ar{D}^0$	3.6	$3.6 imes10^9$	
		$D^+ \bar{D}^-$	2.8	$2.8 imes 10^9$	a lew billior
3.770	1	$D^0 ar D^0$		$7.9 imes 10^8$	Single tag
		$D^+ \bar{D}^-$		5.5×10^8	Single tag
		$\tau^+\tau^-$	2.9	2.9×10^9	
		$D^{*0}\overline{D}^0 + \mathrm{c.c.}$	4.0	$1.4 imes 10^9$	$CP_{D^0\bar{D}^0} = \cdot$
4 009	1	$D^{*0}\overline{D}^0 + \mathrm{c.c.}$	4.0	$2.6 imes 10^9$	$CP_{D^0\bar{D}^0} = \cdot$
4.005	1	$D_s^+ D_s^-$	0.20	$2.0 imes 10^8$	
		$ au^+ au^-$	3.5	3.5×10^9	
		$D_s^{+*}D_s^-$ +c.c.	0.90	$9.0 imes 10^8$	
4.180	1	$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$		$1.3 imes 10^8$	Single tag
		$ au^+ au^-$	3.6	$3.6 imes10^9$	
		$J/\psi \pi^+\pi^-$	0.085	8.5×10^{7}	
4.230	1	$ au^+ au^-$	3.6	$3.6 imes 10^9$	85 million π
		$\gamma X(3872)$			
4.960	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^7	
4.360	1	$ au^+ au^-$	3.5	$3.5 imes 10^9$	
4.420		$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^7	
	1	$ au^+ au^-$	3.5	$3.5 imes 10^9$	
4.630		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^7	
	1	$\Lambda_c \bar{\Lambda}_c$	0.56	$5.6 imes 10^8$	
	1	$\Lambda_c \bar{\Lambda}_c$		$6.4 imes 10^7$	Single tag
		$ au^+ au^-$	3.4	3.4×10^9	0.0
4.0-7.0	3	300-point scan with 10 MeV steps, 1 $fb^{-1}/point$			
> 5	2-7	Several ab ⁻	¹ of high-energy dat	a, details dependent o	n scan results

Table 2.1 The expected numbers of events per year at different STCF energy points.

XYZ	Y(4260)	$Z_{c}(3900)$	$Z_c(4020)$	X(3872)
No. of events	10^{9}	10^{8}	10^{8}	5×10^{6}

arks on J/ψ n $\psi(2S)$

ion D

tagtag

=	+	
=	-	

tag $\pi\pi J/\psi$

- energy range: 2 - 7 GeV

- luminosity: $> 0.5 \times 10^{35}$ cm⁻² s⁻¹
- timeline:

Tentative Project Schedule

<u>n/event/1948/overview</u>

CME (GeV)	Lumi (ab^{-1})	Samples	σ (nb)	No. of events	Remarks
3.097	1	J/ψ	3400	3.4×10^{12}	3 trillion <i>I/w</i>
3.670	1	$ au^+ au^-$	2.4	$2.4 imes 10^9$	
		$\psi(3686)$	640	6.4×10^{11}	400 billion $w(2)$
3.686	1	$ au^+ au^-$	2.5	$2.5 imes 10^9$	out billion $\psi(2z)$
		$\psi(3686) \rightarrow \tau^+ \tau^-$		$2.0 imes 10^9$	
		$D^0 ar{D}^0$	3.6	$3.6 imes 10^9$	
		$D^+ \bar{D}^-$	2.8	$2.8 imes 10^9$	a tew billion D
3.770	1	$D^0 ar{D}^0$		$7.9 imes 10^8$	Single tag
		$D^+ \bar{D}^-$		5.5×10^8	Single tag
		$\tau^+\tau^-$	2.9	$2.9 imes 10^9$	
		$D^{*0}\overline{D}^0 + \mathrm{c.c.}$	4.0	$1.4 imes 10^9$	$CP_{D^0\bar{D}^0} = +$
4.009	1	$D^{*0}\overline{D}^0 + \mathrm{c.c.}$	4.0	$2.6 imes 10^9$	$CP_{D^0\bar{D}^0} = -$
4.005	1	$D_s^+ D_s^-$	0.20	$2.0 imes 10^8$	
		$ au^+ au^-$	3.5	$3.5 imes 10^9$	
		$D_s^{+*}D_s^{-}+ ext{c.c.}$	0.90	$9.0 imes 10^8$	
4.180	1	$D_s^{+*}D_s^-$ +c.c.		$1.3 imes 10^8$	Single tag
		$ au^+ au^-$	3.6	$3.6 imes 10^9$	
		$J/\psi\pi^+\pi^-$	0.085	$8.5 imes 10^7$	0Γ multiplication $- I/2$
4.230	1	$ au^+ au^-$	3.6	$3.6 imes 10^9$	85 million $\pi\pi J/Q$
		$\gamma X(3872)$			
4.360 1	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^7	
	1	$ au^+ au^-$	3.5	$3.5 imes 10^9$	
		$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^7	
4.420	1	$ au^+ au^-$	3.5	$3.5 imes 10^9$	
4.630	-	$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}	
	1	$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}	
		$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single tag
		$\tau^+ \tau^-$	3.4	3.4×10^{9}	
4.0-7.0	3	30	00-point scan with 1	0 MeV steps, 1 fb^{-1}/p	oint
> 5	2-7	Several ah^{-1} of high energy data datails dependent on seen results			

Table 2.1 The expected numbers of events per year at different STCF energy points.

XYZ	Y(4260)	$Z_c(3900)$	$Z_{c}(4020)$	X(3872
No. of events	10^{9}	10^{8}	10^{8}	5×10^6

ion D

=	+	
=	_	

- energy range: 2 7 GeV
- luminosity: $> 0.5 \times 10^{35}$ cm⁻² s⁻¹

hadron spectroscopy at a STCF

- high precision data on Z_c , X(3872) decays & lineshapes
- study the exotic J^{++} states in $e^+e^- \rightarrow \omega/\phi X$
- charmed baryons and their excitations
- hidden-charm pentaquark states in $e^+e^- \rightarrow P_{c\bar{c}}\bar{p}$
- double-charmonium production $e^+e^- \rightarrow J/\psi \eta_c$ or χ_{cI}
- search for the charmonium hybrid with $J^{PC} = 1^{-+}$
- fill in the conventional charmonium spectrum
- light hadrons in J/ψ and $\psi(2S)$ decays

n/event/i/40/0verview

Summary

- e^+e^- machines are very powerful at specific tasks in hadron spectroscopy \rightarrow light-quark & gluonic exotics in charmonium decays \rightarrow vector mesons directly in the annihilation
- but: above 4 GeV, (exotic) charmonia with other J^{PC} are a challenge (two-photon production at Belle II?)
- open questions between e^+e^- and b-decays
- a Super-Tau-Charm Facility could be a game-changer for XYZ physics

