Spectroscopy experiment of charmed and multi-strange baryons using hadron beam at the J-PARC hadron facility

K. Shirotori

Research Center for Nuclear Physics (RCNP) Osaka University

Science at the Luminosity Frontier: Jefferson Lab at 22 GeV

9th Dec. 2024

J-PARC & Hadron Experimental Facility

World's highest level intensity proton beam \Rightarrow Beam power 82 kW

High-p beam line for 2^{ndary} beam: $\pi 20$

***** High-p: 2^{ndary} beams can be provided from the primary proton beam.

- High intensity: >10⁷ /spill for π^{\pm} , p (>10⁵ /spill for K⁻, \overline{p}) up to 20 GeV/c
- High momentum-resolution beam: $\Delta p/p = 0.1\%(\sigma)$

High-p beam line for 2^{ndary} beam: $\pi 20$

***** High-p: 2^{ndary} beams can be provided from the primary proton beam.

- High intensity: >10⁷ /spill for π^{\pm} , p (>10⁵ /spill for K⁻, \overline{p}) up to 20 GeV/c
- High momentum-resolution beam: $\Delta p/p = 0.1\%(\sigma)$

Investigation of baryon internal structure

*****How quarks build hadrons ?

• Dynamics of non-trivial QCD vacuum \Rightarrow Dynamics of Effective DoF

- Effective degrees of freedom: Diquark correlation
- Origin of spin-dependent force: Systematics of spin-spin/spin-orbital forces
- Quark motions in "quark core": Size of "core" and "cloud"

*Instanton: A topological object of gluon that mediates the $U_A(1)$ breaking interaction proposed by Kobayashi, Maskawa, and 't Hoot

Charmed baryon spectroscopy: J-PARC E50

"Excitation mode": λ and ρ modes reflected by Diquark correlation

***** Dynamical information: Production rates and absolute decay branching ratios

• Missing mass method: $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction at 20 GeV/c

Production rates by hadronic reaction

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section(0°): Overlap of wave function $\rightarrow |R \sim \langle \varphi_f | \sqrt{2\sigma_-} \exp(i\vec{q}_{eff}\vec{r}) | \varphi_i \rangle$
 - \Rightarrow **Production rates:** λ/ρ mode assignment
 - Production rate of LS doublet = L : L+1

One-quark process

Large production rate of highly excited states

Two-quark process * Comparable ρ-mode states are expected.

Mom. Trans. : $q_{eff} \sim 1.4 \text{ GeV/c}$ $\alpha \sim 0.4 \text{ GeV}$ ([Baryon size]⁻¹)

 $I_L \sim (q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)$

7

* λ -mode states w/ finite *L* are populated.

S.H. Kim, A. Hosaka, H.C. Kim, H. Noumi, K. Shirotori PTEP 103D01 (2014).

Production rates by hadronic reaction

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section(0°): Overlap of wave function $\rightarrow |R \sim \langle \varphi_f | \sqrt{2} \sigma_{-} \exp(i \vec{q}_{eff} \vec{r}) | \varphi_i \rangle$
 - \Rightarrow **Production rates:** λ/ρ mode assignment
 - Production rate of LS doublet = L : L+1
 - Large production rate of highly excited states •

 $|I_L \sim (q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)$

MARQ spectrometer at $\pi 20$

Hadron experiments at $\pi 20$

- High-momentum 2^{ndary} beam: 2–20 GeV/c
- MARQ spectrometer + Trigger–less streaming-readout type DAQ
- \Rightarrow Various experiments can be conducted.: Simultaneously at the same beam momentum
 - Unseparated beam: e.g. $\pi^-/K^-/\overline{p}$ can be used simultaneously.

Experiment	Beam particle	Momentum [GeV/c]	Intensity [Mcps]
Charmed baryon spectroscopy	π-	20	30
Ξ baryon spectroscopy	K -	5-8	> 0.5
Ω baryon spectroscopy	K -	7–10	> 0.5
Non-strange dibaryon search	proton	2.85-4.00	>1
ϕN interaction study via π^- induced reaction	π^{-}	1.8–2.4	>1
Exclusive Drell-Yan measurement	π^{-}	15	30
$\Lambda(1405)$ study by quark counting rule	π^{-}	5–10	> 10
Double Kaonic nucleus search	proton	8	30
Λ -p scattering experiment with high-momentum	π^-	8.5	30

Heavy flavors for revealing diquark correlation

***** Systematic studies for baryon systems with heavier flavors: *c* & *s*

- Charmed baryon (E50): *ud* diquark correlation
- Ξ baryon (E97): *us/ds* diquark correlation \Rightarrow Flavor dependence
- Ω baryon (P85): Only axial-vector diquark correlation \Rightarrow Reference system

Ω baryon spectroscopy: J-PARC P85

- $\Omega(sss)$ baryon: Flavor symmetric system
- Free from Pion Cloud: Investigation of "Quark core" region (Non-perturbative region)
- ⇒ Origin of spin-dependent forces and quark motion
 - In terms of One Gluon Exchange(OGE), Instanton Induced Interaction(III) and Pion cloud

Roper-like resonances: 2S state

- Systematics of Roper-like states
 - Small excitation energy and wide width
 - Mass universality ?
 - What does determine its width ?

Roper-like resonances: 2S state

- Systematics of Roper-like states
 - Small excitation energy and wide width
 - Mass universality ?
 - What does determine its width ?

Expected mass spectrum: $K^{-} \, p \rightarrow \Omega^{*-} \, K^{*0} \, K^{+}$

Ω^{*-} events: ~10⁵ events @ 100 days (63 nb: Same cross section for all resonances)
Estimated from K⁺ K⁺ π⁻ mode (K⁰ K⁺ mode × 1/40)

• Mass resolution: $\Delta M \sim 5 \text{ MeV} < \text{Width (several 10 MeV)}$

From F. Sakuma

Baryon spectroscopy at J-PARC

- $\pi 20: \pi$ beam (unseparated beam)
 - High intensity: >10⁷ /spill for π^- up to 20 GeV/c
- K10: K⁻ & \overline{p} beam (K/ $\pi \sim 1/2, \, \overline{p}/\pi \sim 2/1$)
 - High intensity: >10⁶ /spill up to 10 GeV/c

- * Systematic *c* and *s*-baryon spectroscopy: ⁴
- **Dynamics of non-trivial QCD vacuum in baryon structure**
- Diquark correlation
 - *ud* diquark: Λ_c / Σ_c
 - us/ds diquark: Ξ
 - Only axial-vector diquark: Ω
- Origin of spin-dependent forces
 - Excited state data of Λ_c / Σ_c , Ξ , Ω systems

Current Programs with SX Power of 100kW

Summary

- How quarks build hadrons ?
 - Disentangle QCD properties behind hadron formation
 - Understanding of dynamics of non-trivial QCD vacuum in baryon structure
 - Investigation of diquark correlation and origin of spin-dependent forces
 - Systematic study of heavier flavor baryons: $\Lambda_c/\Sigma_c, \Xi, \Omega$
- Spectroscopy experiment of heavier flavor baryons
 - Systematic spectroscopy experiments of Λ_c / Σ_c , Ξ , Ω baryons
 - High-intensity & High-momentum hadron beam: $\pi 20$ and K10
 - $\pi 20$ beam line construction with staging
 - Construction of multi-purpose spectrometer: MARQ

*J-PARC hadron experimental facility promotes various hadron experiments.