

Finanziato dall'Unione europea NextGenerationEU Ministero dell'Università e della Ricerca

Fondazione Fondazione Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

VHDL by Examples

Andrea Triossi – University of Padova – INFN Padova

Hardware description

- Drawing a diagram of the hardware design (schematics)
- Textual description
 - Programming language that include explicitly the notion of time
 - Concurrent language
 - Implement the Register Transfer Level (RTL) of a circuit (not dependent on hardware technology but only dataflow between registers and logical operations)
 - Most widely used
 - Verilog
 - VHDL [VHSIC (Very High Speed Integrated Circuit) Hardware Description Language]

VHDL basic structures

- entity: it is a black box where only the interface signals (ports) are described
- architecture: it describes the content of the box in terms of functionalities and/or structures of the circuits

entity And2 is
 port (x,y: in BIT; z: out BIT);
end entity And2;

architecture ex1 of And2 is
begin

```
z <= x and y;
end architecture ex1;
```

VHDL instantiation

- Instead of directly describe the functionality, a more structured (hierarchical) description can be given
- Sub-blocks instantiation

```
entity comb_function is
  port (a, b, c : in BIT; z: out BIT);
end entity comb_function;
architecture expression of comb_function is
begin
  z <= (not a and b) or (a and c);</pre>
```

```
z <= (not a and b) or (a and c);
end architecture expression;
```

VHDL instantiation

- Instead of directly describe the functionality, a more structured (hierarchical) description can be given
- Sub-blocks instantiation

```
entity comb_function is
  port (a, b, c : in BIT; z: out BIT);
end entity comb_function;
architecture netlist of comb_function is
  signal p, q, r : BIT;
begin
  g1: entity WORK.Not1(ex1) port map (a, p);
  g2: entity WORK.And2(ex1) port map (p, b, q);
  g3: entity WORK.And2(ex1) port map (a, c, r);
  g4: entity WORK.Or2(ex1) port map (q, r, z);
end architecture netlist;
```

```
entity Or2 is
 port (x, y : in BIT; z: out BIT);
end entity Or2;
architecture ex1 of Or2 is
begin
 z \ll x \text{ or } y;
end architecture ex1;
entity Not1 is
port (x : in BIT; z: out BIT);
end entity Not1;
architecture ex1 of Not1 is
begin
 z <= not x;
end architecture ex1;
```

Standard logic

'U' Uninitialized
'X' Forcing (i.e. strong) unknown
'0' Forcing 0
'1' Forcing 1
'Z' High impedance
'W' Weak unknown
'L' Weak 0
'H' Weak 1
'-' Don't care

	U	X	0	1	Z	W	L	Η	_
U	U	U	U	U	U	U	U	U	U
Χ	U	Х	Χ	Х	X	Х	X	Х	Х
0	U	Х	0	Х	0	0	0	0	Х
1	U	Х	Х	1	1	1	1	1	Х
Ζ	U	Х	0	1	Ζ	W	L	Η	Х
W	U	Х	0	1	W	W	W	W	Х
L	U	Х	0	1	L	W	L	W	Х
Η	U	Х	0	1	Η	W	W	Η	Х
_	U	Х	Х	Х	Х	Х	Х	Х	Х

ARTY A7

• Artix-7 FPGA

- XC7A100TCSG324-1
- 15,850 slices
- 4,860 Kbits BRAM
- 6 CMTs
- 240 DSP

• ARTY A7 board

- 1 USB-UART Bridge
- 4 Switches
- 4 Buttons
- 1 Reset Button
- 4 LEDs
- 4 RGB LEDs

<u>Reference manual</u>

- Constraints file
- <u>Schematics</u>

LAB COMBINATORIAL

A D P

- Elementary cell for adding two bits (binary digit)
- Extension to two n-bits numbers

A _i	B _i	<i>Ci</i>	Si	<i>C</i> _{<i>i</i>+1}
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

$$S_{i} = \left(A \ \overline{B} \ \overline{C} + \overline{A} \ B \ \overline{C} + \overline{A} \ \overline{B} \ C + A \ B \ C\right)_{i}$$
$$C_{i+1} = \left(A \ B \ \overline{C} + A \ \overline{B} \ C + \overline{A} \ B \ C + A \ B \ C\right)_{i}$$

$$S_{i} = (A \overline{B} + \overline{A} B)_{i} \overline{C_{i}} + (\overline{A} \overline{B} + A B)_{i} C_{i} = (A \oplus B)_{i} \oplus C_{i}$$
$$C_{i+1} = (A B + A C + B C)_{i}$$

- Elementary cell for adding two bits (binary digit)
- Extension to two n-bits numbers

$$S_{i} = (A \overline{B} \overline{C} + \overline{A} B \overline{C} + \overline{A} \overline{B} C + A B C)_{i}$$

$$C_{i+1} = (A B \overline{C} + A \overline{B} C + \overline{A} B C + A B C)_{i}$$

$$S_{i} = (A \overline{B} + \overline{A} B)_{i} \overline{C_{i}} + (\overline{A} \overline{B} + A B)_{i} C_{i} = (A \oplus B)_{i} \oplus C_{i}$$

$$C_{i+1} = (A B + A C + B C)_{i}$$

- Elementary cell for adding two bits (binary digit)
- Extension to two n-bits numbers

LAB RTL ADDER

DIGILENT.

REF

Type conversions

• Adder in VHDL (with unsigned arithmetic)

entity NBitAdder is
generic (n: NATURAL :=4);
port (A, B: in std_logic_vector(n-1 downto 0);
Cin : in std_logic;
Sum : out std_logic_vector(n-1 downto 0);
Cout: out std_logic);
end entity NBitAdder;

```
architecture unsigned of NBitAdder is
signal result : unsigned(n downto 0);
signal carry : unsigned(n downto 0);
constant zeros : unsigned(n-1 downto 0) := (others => '0');
begin
carry <= (zeros & Cin);
result <= ('0' & unsigned(A)) + ('0' & unsigned(B)) + carry;
Sum <= std_logic_vector(result(n-1 downto 0));
Cout <= result(n);
end architecture unsigned;</pre>
```

• Adder in VHDL (with signed arithmetic)

entity NBitAdder is
generic (n: NATURAL :=4);
port (A, B: in std_logic_vector(n-1 downto 0);
Cin : in std_logic;
Sum : out std_logic_vector(n-1 downto 0);
Cout: out std_logic);
end entity NBitAdder;

```
architecture signed of NBitAdder is
signal result : signed(n downto 0);
signal carry : signed(n downto 0);
constant zeros : signed(n-1 downto 0) := (others => '0');
begin
carry <= (zeros & Cin);
result <= (A(n-1) & signed(A)) + (B(n-1) & signed(B)) + carry;
Sum <= std_logic_vector(result(n-1 downto 0));
Cout <= result(n);
end architecture signed;</pre>
```

LAB ARITHMETIC ADDER

-0

Tristate

- It is used for developing bidirectional connections
- A control line is used for putting the output in high-impedance
- Many data buses are usually tristate because they are used to link devices that can be both source and sink of information

Tristate

• Tristate in VHDL

```
entity tri_state_buffer_top is
  Port (I : in STD_LOGIC;
  T : in STD_LOGIC;
  O : out STD_LOGIC;
end tri_state_buffer_top;
```

```
architecture Behavioral of tri_state_buffer_top is
begin
```

```
O <= I when (T = '0') else 'Z';
end Behavioral;
```

```
architecture Primitive of tri_state_buffer_top is
begin
OBUFT_inst : OBUFT
generic map (
    DRIVE => 12,
    IOSTANDARD => "DEFAULT",
    SLEW => "SLOW")
port map (
    O => O, -- Buffer output (connect directly to top-level port)
    I => I, -- Buffer input
    T => T -- 3-state enable input
    );
end Drimitive:
```

end Primitive;

DIGILENT.

BBB

Multiplexer

- A Mux selects one signal among 2^n (D_i) thanks to n address lines (S_i)
- A Demux applies the inverse operation

Multiplexer

• 4 to 1 multiplexer in VHDL

entity mux is
 port (a, b, c, d: in std_logic;
 s: in std_logic_vector(1 downto 0);
 y: out std_logic;
end entity mux;

architecture Behavioural of mux is begin

```
y <= a when s = "00" else
b when s = "01" else
c when s = "10" else
d when s = "11" else
'X';
end architecture Behavioural;
```


Exercise

• Write a n-bit 1 to 4 demultiplexer of an n-bit input

Exercise

- Write a n-bit 1 to 4 demultiplexer of an n-bit input
- Extend the demultiplexer to a generic 1 to m demultiplexer

Exercise

- Write a n-bit 1 to 4 demultiplexer of an n-bit input
- Extend the demultiplexer to a generic 1 to m demultiplexer
- Instantiate it in synthesizable top module (n=3, m=4) and simulate it

• If both inputs are at 1, the circuit keep memory of the previous state

A	B	Q ₂	Q ₁
0	0	1	1
1	0	1	0
0	1	0	1
1	1	X	\overline{X}

• Latch

- Flip-flop set-reset (S-R)
 - A synchronization input t is added
 - If t is not present the output doesn't change

S ⁿ	R ⁿ	Q^{n+1}	\overline{Q}^{n+1}
0	0	Q^n	\overline{Q}^n
1	0	1	0
0	1	0	1
1	1	-	-

$$Q^{n+1} = \left(Q \ \overline{S} \ \overline{R} + S \ \overline{R}\right)^n = \left(S + Q \ \overline{R}\right)^n$$

$$S \ R = 0$$

- Flip-flop J-K
 - It removes the forbidden state

$$Q^{n+1} = \left(Q\,\overline{J}\,\overline{K} + J\,\overline{K} + \overline{Q}\,J\,K\right)^n = \left(Q\,\overline{K} + \overline{Q}\,J\right)^n$$

J ⁿ	K ⁿ	Q^{n+1}	\overline{Q}^{n+1}
0	0	Q^n	\overline{Q}^n
1	0	1	0
0	1	0	1
1	1	\overline{Q}^n	Q^n

• Flip-flop D

• Only one input

 $Q^{n+1} = D^n$

D ⁿ	Q^{n+1}	\overline{Q}^{n+1}
0	0	1
1	1	0

• D Flip-flop in VHDL

```
entity RisingEdge_DFlipFlop is
  port(
    Q : out std_logic;
    Clk :in std_logic;
    D :in std_logic
  );
end RisingEdge_DFlipFlop;
```

architecture Behavioral of RisingEdge_DFlipFlop is
begin
process(Clk)
begin
if(rising_edge(Clk)) then
 Q <= D;
end if;
end process;
end Behavioral;</pre>

VHDL sequential

- Usually, all the assignments and instantiations in VHDL are concurrent
- Sequential statements can be used in sub-program (procedure and function) or processes

```
entity priority is
  port (a: in std logic vector(3 downto 0);
     y: out std logic vector(1 downto 0);
     valid: out std logic);
end entity priority;
architecture Concurrent of priority is
begin
y <= "11" when a(3) = '1' else
      "10" when a(2) = '1' else
     "01" when a(1) = '1' else
      "00" when a(0) = '1' else
      "00";
valid <= '1' when a(0) = '1' or a(1) = '1'
          or a(2) = '1' or a(3) = '1' else
          '0':
end architecture Concurrent;
```

```
architecture Sequential of
priority is
begin
 process (a) is
 begin
  if a(3) = '1' then
 y <= "11";
  valid <= '1';</pre>
  elsif a(2) = '1' then
 v <= "10";
  valid <= '1';</pre>
  elsif a(1) = '1' then
 v <= "01";
  valid <= '1';</pre>
  elsif a(0) = '1' then
  v <= "00";
  valid <= '1';</pre>
  else
  v <= "00";
  valid <= '0';</pre>
  end if;
 end process;
end architecture Sequential;
```

```
architecture Sequential2 of
priority is
begin
process (a) is
begin
valid <= '1';</pre>
  if a(3) = '1' then
  y <= "11";
  elsif a(2) = '1' then
  v <= "10";
  elsif a(1) = '1' then
  v <= "01";
  elsif a(0) = '1' then
  v <= "00";
  else
  valid <= '0';</pre>
  v <= "00";
  end if;
 end process;
end architecture Sequential2;
```

VHDL sequential

- Usually, all the assignments and instantiations in VHDL are concurrent
- Sequential statements can be used in sub-program (procedure and function) or processes

VHDL sequential

- Usually, all the assignments and instantiations in VHDL are concurrent
- Sequential statements can be used in sub-program (procedure and function) or processes

LAB MEMORY ELEMENTS

Sequential circuits

• Usually, memory elements are controlled by logic functions

• Examples are counters, shift registers...

Counter

- Design a 4-bit counter
- $A^{n+1} = \left[\overline{A}\right]^n$
- $B^{n+1} = \left[A\overline{B} + \overline{A}B\right]^n$
- $C^{n+1} = \left[C\left(\overline{A} + \overline{B}\right) + \overline{C}AB\right]^n$
- $D^{n+1} = \left[D\left(\overline{A} + \overline{B} + \overline{C}\right) + \overline{D}ABC\right]^n$
- 4 FFs and 4 LUTs

D^n	C ⁿ	B ⁿ	<i>A</i> ⁿ	D^{n+1}	C^{n+1}	B^{n+1}	A ⁿ⁺¹
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0

Counter

• Counter in VHDL

```
architecture Behavioral of Counter is
signal count : unsigned(3 downto 0) :=(others => '0');
begin
process(Clk, count)
begin
if(rising_edge(Clk)) then
count <= count + 1;
end if;
end process;
O <= std_logic_vector(count);
end Behavioral;
```

Shift register

- It is used to shift a signal
- Its design can be obtained by the sequential table
- Without feedback can be used to access in parallel to a serial data or to serialize a parallel data
- Each cell can have a multiplexer to choose if shifting the bit or loading a new bit

Shift register

• Shift register in VHDL

```
sreg : process(clk, rst)
begin
if (rst='1') then
r_data <= (others=>(others=>'0'));
elsif (rising_edge(clk)) then
r_data(0) <= i_data;
for i in 1 to r_data'length-1 loop
r_data(i) <= r_data(i-1);
end loop;
end if;
end process;</pre>
```

Attributes

<pre>T'LEFT is the leftmost value of type T. (Largest if downto) T'RIGHT is the highest value of type T. T'LOW is the lowest value of type T. T'LOW is the lowest value of type T. T'ASCENDIG is boolean true if range of T defined with to . T'MAGE(X) is a string representation of X that is of type T. T'VAULE(X) is a value of type T converted from the string X. T'VAULE(X) is the integer position of X in the discrete type T. T'VAL(X) is the value of discrete type T at integer position X. T'SUCC(X) is the value of discrete type T that is the predecessor of X. T'RIGHTO(X) is the value of discrete type T that is left of X. T'RIGHTO(X) is the value of discrete type T that is left of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'LEFT(N) is the value of discret type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of dimension N of array A. A'HIGH is the rightmost subscript of dimension N of array A. A'HIGH(N) is the highest subscript of dimension N of array A. A'HOW(N) is the lowest subscript of dimension N of array A. A'LOW is the lowest subscript of dimension N of array A. A'LOW is the lowest subscript of dimension N of array A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of S at time now - t. S'STABLE(t) is true if no event hs occurring on signal S. S'STABLE(t) is true if signal S is quiet. (no event this simulation cycle S'QUIET(t) is true if signal S has been quiet for t units of time. S'QUIET(t) is true if signal S has been quiet for t units of time. S'QUIET(t) is true if signal S has been quiet for t units of time. S'ULET_VALUE is the time since the last event on signal S. S'LAST_ACTIVE is the time since the last event on signal S. S'LAST_ACTIVE is the time since the last event on signal S. S'LAST_ACTIVE is the time since the</pre>	T'BASE	is the base type of the type T					
<pre>T'RIGHT is the rightmost value of type T. (Smallest if downto) T'HIGH is the highest value of type T. T'ASCENDING is boolean true if range of T defined with to . T'HAGE(X) is a string representation of X that is of type T. T'VALUE(X) is a value of type T converted from the string X. T'POS(X) is the integer position of X in the discrete type T. T'VAL(X) is the value of discrete type T at integer position X. T'SUCC(X) is the value of discrete type T that is the successor of X. T'PRED(X) is the value of discrete type T that is the predecessor of X. T'RETOF(X) is the value of discrete type T that is left of X. T'RIGHTOF(X) is the value of discrete type T that is left of X. T'RIGHTOF(X) is the leftmost subscript of array A or constrained array type. A'LEFT(N) is the leftmost subscript of array A or constrained array type. A'HIGHT is the highest subscript of array A or constrained array type. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH is the lowest subscript of array A or constrained array type. A'HIGH(N) is the lowest subscript of array A or constrained array type. A'HIGH is the lowest subscript of array A or constrained array type. A'HIGH(N) is the lowest subscript of array A or constrained array type. A'HIGH(N) is the lowest subscript of array A or constrained array type. A'HOW is the lowest subscript of array A or constrained array type. A'HOW(N) is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of S at time now - t . S'STABLE is true if no even has occurring on signal S. S'STABLE(t) is the signal Value of S at time now - t . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . A'ASCENDING(N) is a boolean true if dimension N of array A defined with to . A'ASCENDING(N) is a boolean true if adjued S at time now - t . S'STABLE(t) is true if signal S is active during current simulation cycle) S'ULIT</pre>	T'LEFT						
T'HIGH is the highest value of type T. T'LOW is the lowest value of type T. T'ASCENDING is boolean true if range of T defined with to . T'IMAGE(X) is a string representation of X that is of type T. T'VALUE(X) is a value of type T converted from the string X. T'POS(X) is the integer position of X in the discrete type T. T'VAL(X) is the value of discrete type T at integer position X. T'SUCC(X) is the value of discrete type T that is the successor of X. T'REC(X) is the value of discrete type T that is the predecessor of X. T'REC(X) is the value of discrete type T that is left of X. T'REC(X) is the value of discrete type T that is left of X. T'REC(X) is the value of discrete type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'LEFT(N) is the rightmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'RIGH(N) is the highest subscript of array A or constrained array type. A'LOW is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of array A or constrained array type. A'LOW(N) is the nange of A with to and downto reversed. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH(N) is the output of dimension N of array A. A'LENGTH(N) is to solean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A. A'LENGTH(N) is the unumber of elements of dimension N of array A. A'LENGTH(N) is the unume of a lett in one v t . S'STABLE(t) is true if signal S is quiet. (no event this simulation cycle) S'QUIET is true if signal S is quiet. (no event this simulation cycle. S'ASTABLE(t) is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last eve	T'RIGHT						
<pre>T'LOW is the lowest value of type T. T'ASCENDING is boolean true if range of T defined with to . T'VALUE(X) is a value of type T converted from the string X. T'POS(X) is the integer position of X in the discrete type T. T'VALUE(X) is the value of discrete type T that is the successor of X. T'VALUE(X) is the value of discrete type T that is the successor of X. T'SUCC(X) is the value of discrete type T that is the predecessor of X. T'RETOF(X) is the value of discrete type T that is the predecessor of X. T'LEFTOF(X) is the value of discrete type T that is left of X. T'LEFTOF(X) is the value of discrete type T that is left of X. T'LEFTOF(X) is the value of discrete type T that is right of X. T'LEFTOF(X) is the leftmost subscript of array A or constrained array type. A'LEFT is the leftmost subscript of dimension N of array A. A'RIGHT is the rightmost subscript of dimension N of array A. A'HIGH is the highest subscript of dimension N of array A. A'HIGH is the highest subscript of dimension N of array A. A'LOW is the lowest subscript of dimension N of array A. A'LOW is the lowest subscript of dimension N of array A. A'LOW is the lowest subscript of dimension N of array A. A'RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the number of elements in array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH(N) is the integer value of the number of array A defined with to . A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING is boolean true if a dimension N of array A. A'LENGTH is true if no even this occurring on signal S. S'STABLE(t) is true if signal S is quiet. (no event this simulation cycle) S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET is true if signal S has been quiet for t units of time. S'TABLE(T) is true if signal S has been quiet for t units of time. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time s</pre>	T'HIGH	is the highest value of type T.					
T'ASCENDING is boolean true if range of T defined with to . T'IMAGE(X) is a string representation of X that is of type T. T'VALUE(X) is a value of type T converted from the string X. T'POS(X) is the integer position of X in the discrete type T. T'VALUX) is the value of discrete type T that is the successor of X. T'PRED(X) is the value of discrete type T that is the predecessor of X. T'RED(X) is the value of discrete type T that is left of X. T'RED(X) is the value of discrete type T that is left of X. T'LEFTOF(X) is the value of discrete type T that is left of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'LEFT(N) is the leftmost subscript of dimension N of array A. A'LEFT is the leftmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the highest subscript of dimension N of array A. A'LOW(N) is the highest subscript of dimension N of array A. A'LOW(N) is the lowest subscript of dimension N of array A. A'LOW(N) is the lowest subscript of dimension N of array A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of S at time now - t . S'STABLE() is true if no even tis occurring on signal S. S'STABLE() is true if no even tis occurring on signal S. S'STABLE() is true if no even tis occurring on signal S. S'STABLE() is true if signal S has been quiet for t units of time. S'UTIF is true if signal S has been quiet for t units of time. S'UTIF is true if signal S has been quiet for t units of time. S'UTIF is true if signal S has been quiet for t units of time. S'LAST_EVENT is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since signal S. S'LAST_EVENT is	T'LOW						
T'IMAGE(X) is a string representation of X that is of type T. T'VALUE(X) is a value of type T converted from the string X. T'POS(X) is the integer position of X in the discrete type T. T'VAL(X) is the value of discrete type T that is the predecessor of X. T'SUCC(X) is the value of discrete type T that is the predecessor of X. T'REFTOF(X) is the value of discrete type T that is left of X. T'RIGHTOF(X) is the value of discrete type T that is left of X. T'RIGHTOF(X) is the value of discrete type T that is right of X. T'RIGHTOF(X) is the leftmost subscript of array A or constrained array type. A'LEFT is the leftmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH is the highest subscript of dimension N of array A. A'HIGH is the highest subscript of dimension N of array A. A'HIGH is the lowest subscript of dimension N of array A. A'HOW(N) is the lowest subscript of Array A or constrained array type. A'LOW(N) is the range of dimension N of array A. A'RANGE is the range of dimension N of array A. A'REVERSE RANGE is the range of A with to and downto reversed. A'REVERSE RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last ev	T'ASCENDING						
T'VALUE(X) is a value of type T converted from the string X. T'POS(X) is the integer position of X in the discrete type T. T'VAL(X) is the value of discrete type T that is the successor of X. T'PRED(X) is the value of discrete type T that is the predecessor of X. T'PRED(X) is the value of discrete type T that is the predecessor of X. T'RIGHTOF(X) is the value of discrete type T that is left of X. T'RIGHTOF(X) is the value of discrete type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of dimension N of array A. A'LOW(N) is the lowest subscript of dimension N of array A. A'LOW(N) is the range of A with to and downto reversed. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of S at time now - t . S'STABLE(t) is true if no even tis occurring on signal S. S'STABLE(t) is true if no even tis occurring on signal S. S'STABLE(t) is true if no even tis occurring on signal S. S'LASI_EVENT is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'LASI_EVENT is true if signal S has had an event this simulation cycle. S'LASI_EVENT is the time since the last event on signal S. S'LASI_EVENT is the time since the last event on signal S. S'LASI_EVENT is the time since the last event on signal S. S	T'IMAGE(X)	-					
T'POS(X) is the integer position of X in the discrete type T. T'VAL(X) is the value of discrete type T at integer position X. T'SUC(X) is the value of discrete type T that is the successor of X. T'PRED(X) is the value of discrete type T that is left of X. T'RIGHTO(X) is the value of discrete type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'LEFT is the leftmost subscript of array A or constrained array type. A'LEFT is the rightmost subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'RIGH(N) is the highest subscript of array A or constrained array type. A'LOW is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of dimension N of array A. A'LOW is the name of dimension N of array A. A'RANGE is the range of dimension N of array A. A'RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'LENGTH(N) is the signal value of S at time now - t. S'DTABLE is true if no even has occurring on signal S. S'STABLE(1) is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'UAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on si							
T'VAL(X) is the value of discrete type T at integer position X. T'SUCC(X) is the value of discrete type T that is the successor of X. T'REFLO(X) is the value of discrete type T that is left of X. T'LEFTOF(X) is the value of discrete type T that is left of X. T'LEFTOF(X) is the value of discrete type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'HIGH(N) is the highest subscript of array A or constrained array type. A'HIGH(N) is the lowest subscript of array A or constrained array type. A'HOW(N) is the lowest subscript of array A or constrained array type. A'HOW(N) is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE(N) is the range of dimension N of array A. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the number of elements of dimension N of array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'LENGTH(N) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(1) is true if signal S is quiet. (no event this simulation cycle) S'QUIET(1) is true if signal S has been quiet for t units of time. S'RANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'LAST_VENT is the time since the last event on signal S. S'LAST_VENT is the time since the last event on signal S. S'LAST_VENT is the time since the last event on signal S. S'LAST_VALUE is the time since signal S. S'D							
T'SUCC(X) is the value of discrete type T that is the successor of X. T'PRED(X) is the value of discrete type T that is left of X. T'LEFTOF(X) is the value of discrete type T that is left of X. T'RIGHTOF(X) is the value of discrete type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'LEFT(N) is the leftmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the highest subscript of array A or constrained array type. A'HIGH(N) is the highest subscript of array A or constrained array type. A'LOW is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of array A or constrained array type. A'LOW(N) is the name of dimension N of array A. A'LOW(N) is the name of dimension N of array A. A'RANGE(N) is the range of A with to and downto reversed. A'REVERSE_RANGE (N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of the number of elements in array A. A'ASCENDING is boolean true if dimension N of array A. A'ASCENDING(N) is boolean true if dimension N of array A. A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'STABLE is true if no even has occurred on signal S. S'STABLE is true if no even has occurred on signal S for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'VENT is true if signal S has had an event this simulation cycle. S'LAST_VALUE is the time since the last event on signal S. S'LAST_VALUE is the time since the last event on signal S. S'LAST_VALUE is the time since the last event on signal S. S'LAST_VALUE is the time since signal S was last active. S'LAST_VALUE is the time since signal S. S'LA							
T'PRED(X) is the value of discrete type T that is the predecessor of X. T'LEFTOF(X) is the value of discrete type T that is left of X. T'RIGHTOF(X) is the value of discrete type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'LEFT(N) is the leftmost subscript of dimension N of array A. A'RIGHT is the rightmost subscript of dimension N of array A. A'RIGHT(N) is the rightmost subscript of array A or constrained array type. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH is the lowest subscript of array A or constrained array type. A'HOW(N) is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE(N) is the range of dimension N of array A. A'REVERSE_RANGE is the range of the number of elements in array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the signal value of A defined with to . A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING is boolean true if dimension N of array A defined with to . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has head an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_WALUE is the time since signal S was last active. S'LAST_VALUE is the time since signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driver of S is a null transaction. S'DRIVING_NAUE is a string containing the mark of signal S. S'DIVING_NAUE is a string containing the design hierarchy including E.							
T'LEFTOF(X) is the value of discrete type T that is left of X. T'RIGHTOF(X) is the value of discrete type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'RIGHT is the leftmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of dimension N of array A. A'HIGH is the highest subscript of dimension N of array A. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH(N) is the highest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the range of A with to and downto reversed. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of the number of array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'LENGTH(N) is boolean true if dimension N of array A. A'SCENDING(N) is boolean true if dimension N of array A. A'ASCENDING(N) is boolean true if dimension N of array A. A'SCENDING(N) is boolean true if dimension N of array A. A'SCENDING(N) is boolean true if on event is occurring on signal S. S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'LAST_VALUE is the time since the last event on signal S. S'LAST_VALUE is the time since signal S was last active. S'LAST_VALUE is the time since signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is false only if the cu							
T'RIGHTOF(X) is the value of discrete type T that is right of X. A'LEFT is the leftmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT is the rightmost subscript of dimension N of array A. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH(N) is the highest subscript of dimension N of array A. A'LOW is the howest subscript of dimension N of array A. A'LOW is the lowest subscript of dimension N of array A. A'LOW is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE(N) is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the number of elements of dimension N of array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'LENGTH(N) is the signal value of S at time now - t . S'STABLE is true if no event has occurring on signal S. S'STABLE(t) is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'ZUIET is true if signal S has been quiet for t units of time. S'ZUIET(t) is true if signal S has been quiet for t units of time. S'ZUIET is true if signal S has had an event this simulation cycle. S'LAST_ACTIVE is the time since the last event on signal S. S'LAST_VALUE is the time since the last event on signal S. S'LAST_VALUE is the time since the last event on signal S. S'LAST_VALUE is the time since the last event on signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the time since signal S. S'DRIVING_WALUE is a string containing the design hierarchy including E.							
A'LEFT is the leftmost subscript of array A or constrained array type. A'LEFT(N) is the leftmost subscript of dimension N of array A. A'RIGHT is the rightmost subscript of array A or constrained array type. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH(N) is the highest subscript of array A or constrained array type. A'HOW is the lowest subscript of array A or constrained array type. A'HOW is the lowest subscript of array A or constrained array type. A'HOW(N) is the lowest subscript of array A or constrained array type. A'HOW(N) is the lowest subscript of A'HOM or A'HOM ON A'RIGHT . A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE(N) is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the number of elements of dimension N of array A. A'LENGTH (N) is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is true if no event is occurred on signal S. S'STABLE is true if no event as occurred on signal S. S'STABLE(t) is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'QUIET is true if signal S has head an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'ACTIVE is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since signal S was last active. S'LAST_EVENT is the time since signal S was last active. S'LAST_EVENT is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driver of S is a null transaction. S'DRIVING							
A'LEFT(N) is the leftmost subscript of dimension N of array A. A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT (N) is the rightmost subscript of dimension N of array A. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH(N) is the highest subscript of array A or constrained array type. A'LOW is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of dimension N of array A. A'LOW(N) is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE(N) is the range of A with to and downto reversed. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE is the range of A with to and downto reversed. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of A defined with to . A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING is boolean true if arange of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event has occurred on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET is true if signal S has been quiet for t units of time. S'EVENT is true if signal S has had an event this simulation cycle. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is a strin							
A'RIGHT is the rightmost subscript of array A or constrained array type. A'RIGHT(N) is the rightmost subscript of dimension N of array A. A'HIGH is the highest subscript of array A or constrained array type. A'LOW is the lowest subscript of array A or constrained array type. A'LOW is the lowest subscript of dimension N of array A. A'LOW is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE(N) is the range of dimension N of A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(M) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the integer value of the number of elements in array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING is boolean true if array of a defined with to . S'DELAYED(t) is the signal value of S at time now -t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no event has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET is true if signal S has been quiet for t units of time. S'EVENT is true if signal S has been quiet for t units of time. S'EVENT is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since signal S was last active. S'LAST_EVENT is the time since signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. S'DRIVING_VALUE is the current driver of S is a null trans							
A'RIGHT(N) is the rightmost subscript of dimension N of array A. A'HIGH is the highest subscript of array A or constrained array type. A'HIGH(N) is the highest subscript of dimension N of array A. A'LOW is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT. A'RANGE(N) is the range of dimension N of A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING is boolean true if famge of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no event as occurred on signal S for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_VALUE is the time since the last event on signal S. S'LAST_VALUE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
A'HIGH is the highest subscript of array A or constrained array type. A'HIGH(N) is the highest subscript of dimension N of array A. A'LOW is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT. A'RANGE(N) is the range of dimension N of A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE (N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING is boolean true if famension N of array A defined with to . A'ASCENDING(N) is boolean true if famension N of array A defined with to . S'SDELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S has been quiet for t units of time. S'QUIET(t) is true if signal S has been quiet for t units of time. S'QUIET(t) is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_AVINE is the time since the last event on signal S. S'LAST_VALUE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. S'DRIVING is a string containing the mame of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
A'HIGH(N) is the highest subscript of dimension N of array A. A'LOW is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE(N) is the range of dimension N of A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH (N) is the number of elements of dimension N of array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'SCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if signal S is quiet. (no event this simulation cycle) S'QUIET is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since signal S was last active. S'LAST_EVENT is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
A'LOW is the lowest subscript of array A or constrained array type. A'LOW(N) is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT. A'RANGE(N) is the range of dimension N of A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH is the number of elements of dimension N of array A. A'LENGTH is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since signal S was last active. S'LAST_EVENT is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
A'LOW(N) is the lowest subscript of dimension N of array A. A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT. A'RANGE(N) is the range of dimension N of A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH (N) is the number of elements of dimension N of array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
A'RANGE is the range A'LEFT to A'RIGHT or A'LEFT downto A'RIGHT . A'RANGE(N) is the range of dimension N of A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if signal S is quiet. (no event this simulation cycle) S'QUIET is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_CALUE is the time since the last event on signal S. S'LAST_VALUE is the previous value of signal S. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
<pre>A'RANGE(N) is the range of dimension N of A. A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the design hierarchy including E.</pre>							
A'REVERSE_RANGE is the range of A with to and downto reversed. A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_ACTIVE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
A'REVERSE_RANGE(N) is the REVERSE_RANGE of dimension N of array A. A'LENGTH is the integer value of the number of elements in array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_VALUE is the time since the last event on signal S. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
A'LENGTH is the integer value of the number of elements in array A. A'LENGTH(N) is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_EVENT is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.	_	-					
A'LENGTH(N) is the number of elements of dimension N of array A. A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t. S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.	_						
A'ASCENDING is boolean true if range of A defined with to . A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t. S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.	A'LENGTH(N)						
A'ASCENDING(N) is boolean true if dimension N of array A defined with to . S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since the last event on signal S. S'LAST_ACTIVE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
<pre>S'DELAYED(t) is the signal value of S at time now - t . S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.</pre>							
<pre>S'STABLE is true if no event is occurring on signal S. S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.</pre>							
<pre>S'STABLE(t) is true if no even has occurred on signal S for t units of time. S'QUIET is true if signal S is quiet. (no event this simulation cycle) S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.</pre>		-					
<pre>S'QUIET(t) is true if signal S has been quiet for t units of time. S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.</pre>	S'STABLE(t)	is true if no even has occurred on signal S for t units of time.					
S'TRANSACTION is a bit signal, the inverse of previous value each cycle S is active. S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
S'EVENT is true if signal S has had an event this simulation cycle. S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
S'ACTIVE is true if signal S is active during current simulation cycle. S'LAST_EVENT is the time since the last event on signal S. S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
S'LAST_ACTIVE is the time since signal S was last active. S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
S'LAST_VALUE is the previous value of signal S. S'DRIVING is false only if the current driver of S is a null transaction. S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.							
S'DRIVING_VALUE is the current driving value of signal S. E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.	S'LAST_VALUE is the previous value of signal S.						
E'SIMPLE_NAME is a string containing the name of entity E. E'INSTANCE_NAME is a string containing the design hierarchy including E.	•						
E'INSTANCE_NAME is a string containing the design hierarchy including E.							
E'INSTANCE_NAME is a string containing the design hierarchy including E.	E'SIMPLE_NAME is a string containing the name of entity E.						
E PATH_NAME is a string containing the design hierarchy of E to design root.							

LAB SEQUENTIAL CIRCUITS

57

Extended counter

- Goal: make a counter able to increase by one/three or decrease by one/three depending on a control
 - +1/+3/-1/-3 modes
 - Use the leds as counter display
 - Generate internally a control that periodically change
- Simulate
- Implement
 - Upload the bitstream here <u>http://fpgatrio.zapto.org</u>

DIGILENT.

BBB

Memory

- It can be seen as an array of FF
- A decoder is used for addressing the data raw
- A tristate allows read/write operation
- Memory size = data width x 2^{address width}
- Random Access Memory (RAM)
 - If Read Only is called ROM
 - It can contain a truth table -> It implements any combinatorial function
- Synchronous RAM can be easily synthetized in FPGA

Memory

• RAM in VHDL

```
architecture Behavioral of ram_ent is
type ram_type is array (31 downto 0)
    of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(4 downto 0);
begin
```

```
process (clk)
begin
if rising_edge(Clk) then
if (we = '1') then
    RAM(to_integer(unsigned(a))) <= di;
end if;
read_a <= a;
end if;
end process;
do <= RAM(to_integer(unsigned(read_a)));
end Behavioral;</pre>
```


State machine

- A general schema for functions that control sequential logic take into account external signals *C* and produce control signals *P*
 - Mealey state machine: P is function of C and Q
 - Moore state machine: P is only function of Q
- Moore outputs are synchronous

VHDL state machine

- There are several ways of encoding a state machine
 - One process (clocked process with a case statement)
 - Two processes (clocked process for changing state, combinatorial process for setting outputs)
 - Three processes (clocked process for changing state, combinatorial process for next state choice, combinatorial process for setting outputs)
- Other combinations of processes are also allowed
- Just a coding style

VHDL state machine

• One process state machine

process(Clk) is
begin
if rising_edge(Clk) then
if Rst = '1' then
State <= S0;
Dout <= Value0;
else</pre>

case State is when S0 => if Condition0 then State <= S1; Dout <= Value1;</pre> end if; when S1 => if Condition1 then State <= SO; Dout <= Value0; end if; when others => Dout <= Value0;</pre> State <= SO; end case; end if; end if; end process;

VHDL state machine

• Two processes state machine

process(Clk) is
begin
if rising_edge(Clk) then
if Rst = '1' then
State <= S0;
else
State <= NextState;
end if;
end if;
end process;
</pre>

process(State, Condition0, Condition1) is
begin
NextState <= State;</pre>

case State is when S0 => Dout <= Value0;</pre> if Condition0 then NextState <= S1;</pre> end if; when S1 => Dout <= Value1;</pre> if Condition1 then NextState <= S0;</pre> end if; when others => Dout <= Value0;</pre> NextState <= S0; end case; end if: end if; end process;

FSM detecting sequences

- Design two FSMs
 - 1. Johnson counter
 - 2. Blink each full sequence of the first
- Simulate
- Implement
 - Upload the bitstream here <u>http://fpgatrio.zapto.org</u>

A ⁿ	B ⁿ	Cn	A^{n+1}	B^{n+1}	<i>C</i> ⁿ⁺¹
0	0	0	1	0	0
1	0	0	1	1	0
1	1	0	1	1	1
1	1	1	0	1	1
0	1	1	0	0	1
0	0	1	0	0	0

