
VHDL by Examples

Andrea Triossi – University of Padova – INFN Padova

Hardware description

• Drawing a diagram of the hardware design (schematics)

• Textual description
• Programming language that include explicitly the notion of time

• Concurrent language

• Implement the Register Transfer Level (RTL) of a circuit (not dependent on
hardware technology but only dataflow between registers and logical
operations)

• Most widely used
• Verilog

• VHDL [VHSIC (Very High Speed Integrated Circuit) Hardware Description Language]

VHDL basic structures

• entity: it is a black box where only the interface signals (ports) are
described

• architecture: it describes the content of the box in terms of
functionalities and/or structures of the circuits

entity And2 is

 port (x,y: in BIT; z: out BIT);

end entity And2;

architecture ex1 of And2 is

begin

 z <= x and y;

end architecture ex1;

architecture ex2 of And2 is

begin

 z <= '1' when x & y = "11" else

………………'0';

end architecture ex2;

VHDL instantiation

• Instead of directly describe the functionality, a more structured
(hierarchical) description can be given

• Sub-blocks instantiation

entity comb_function is

 port (a, b, c : in BIT; z: out BIT);

end entity comb_function;

architecture expression of comb_function is

begin

 z <= (not a and b) or (a and c);

end architecture expression;

VHDL instantiation

• Instead of directly describe the functionality, a more structured
(hierarchical) description can be given

• Sub-blocks instantiation entity Or2 is

 port (x, y : in BIT; z: out BIT);

end entity Or2;

architecture ex1 of Or2 is

begin

 z <= x or y;

end architecture ex1;

entity Not1 is

 port (x : in BIT; z: out BIT);

end entity Not1;

architecture ex1 of Not1 is

begin

 z <= not x;

end architecture ex1;

entity comb_function is

 port (a, b, c : in BIT; z: out BIT);

end entity comb_function;

architecture netlist of comb_function is

signal p, q, r : BIT;

begin

 g1: entity WORK.Not1(ex1) port map (a, p);

 g2: entity WORK.And2(ex1) port map (p, b, q);

 g3: entity WORK.And2(ex1) port map (a, c, r);

g4: entity WORK.Or2(ex1) port map (q, r, z);

end architecture netlist;

Standard logic

ARTY A7

• Artix-7 FPGA
• XC7A100TCSG324-1
• 15,850 slices
• 4,860 Kbits BRAM
• 6 CMTs
• 240 DSP

• ARTY A7 board
• 1 USB-UART Bridge
• 4 Switches
• 4 Buttons
• 1 Reset Button
• 4 LEDs
• 4 RGB LEDs

• Reference manual

• Constraints file

• Schematics

https://digilent.com/reference/programmable-logic/arty-a7/reference-manual
https://github.com/Digilent/digilent-xdc/blob/master/Arty-A7-100-Master.xdc
https://digilent.com/reference/_media/programmable-logic/arty-a7/arty-a7-e2-sch.pdf

LAB COMBINATORIAL

Adder

• Elementary cell for adding two bits (binary digit)

• Extension to two n-bits numbers

𝑨𝒊 𝑩𝒊 𝑪𝒊 𝑺𝒊 𝑪𝒊+𝟏

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

𝑆𝑖 = 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶
𝑖

𝐶𝑖+1 = 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶
𝑖

𝑆𝑖 = 𝐴 𝐵 + 𝐴 𝐵
𝑖
𝐶𝑖 + 𝐴 𝐵 + 𝐴 𝐵

𝑖
𝐶𝑖 = 𝐴⊕ 𝐵 𝑖 ⊕𝐶𝑖

𝐶𝑖+1 = 𝐴 𝐵 + 𝐴 𝐶 + 𝐵 𝐶 𝑖

Adder

• Elementary cell for adding two bits (binary digit)

• Extension to two n-bits numbers

𝑆𝑖 = 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶
𝑖

𝐶𝑖+1 = 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵 𝐶
𝑖

𝑆𝑖 = 𝐴 𝐵 + 𝐴 𝐵
𝑖
𝐶𝑖 + 𝐴 𝐵 + 𝐴 𝐵

𝑖
𝐶𝑖 = 𝐴⊕ 𝐵 𝑖 ⊕𝐶𝑖

𝐶𝑖+1 = 𝐴 𝐵 + 𝐴 𝐶 + 𝐵 𝐶 𝑖

Adder

• Elementary cell for adding two bits (binary digit)

• Extension to two n-bits numbers

𝐶0

𝐵0𝐴0

𝑆0

𝐶1

𝐵1𝐴1

𝑆1

𝐶2

𝐵2𝐴2

𝑆2

𝐶3

𝐵3𝐴3

𝑆3

𝐶4

LAB RTL ADDER

Type conversions

Adder

• Adder in VHDL (with unsigned arithmetic)

entity NBitAdder is
 generic (n: NATURAL :=4);
 port (A, B: in std_logic_vector(n-1 downto 0);
 Cin : in std_logic;
 Sum : out std_logic_vector(n-1 downto 0);
 Cout: out std_logic);
end entity NBitAdder;

architecture unsigned of NBitAdder is
 signal result : unsigned(n downto 0);
 signal carry : unsigned(n downto 0);
 constant zeros : unsigned(n-1 downto 0) := (others => '0');
begin
 carry <= (zeros & Cin);
 result <= ('0' & unsigned(A)) + ('0' & unsigned(B)) + carry;
 Sum <= std_logic_vector(result(n-1 downto 0));
 Cout <= result(n);
end architecture unsigned;

Adder

• Adder in VHDL (with signed arithmetic)

entity NBitAdder is
 generic (n: NATURAL :=4);
 port (A, B: in std_logic_vector(n-1 downto 0);
 Cin : in std_logic;
 Sum : out std_logic_vector(n-1 downto 0);
 Cout: out std_logic);
end entity NBitAdder;

architecture signed of NBitAdder is
 signal result : signed(n downto 0);
 signal carry : signed(n downto 0);
 constant zeros : signed(n-1 downto 0) := (others => '0');
begin
 carry <= (zeros & Cin);
 result <= (A(n-1) & signed(A)) + (B(n-1) & signed(B)) + carry;
 Sum <= std_logic_vector(result(n-1 downto 0));
 Cout <= result(n);
end architecture signed;

LAB ARITHMETIC ADDER

Tristate

• It is used for developing bidirectional connections

• A control line is used for putting the output in high-impedance

• Many data buses are usually tristate because they are used to link
devices that can be both source and sink of information

𝑨 𝑪 𝑩

0 0 Z

1 0 Z

0 1 0

1 1 1

• Tristate in VHDL

Tristate

architecture Primitive of tri_state_buffer_top is
begin
 OBUFT_inst : OBUFT
 generic map (
 DRIVE => 12,
 IOSTANDARD => "DEFAULT",
 SLEW => "SLOW")
 port map (
 O => O, -- Buffer output (connect directly to top-level port)
 I => I, -- Buffer input
 T => T -- 3-state enable input
);
end Primitive;

entity tri_state_buffer_top is
 Port (I : in STD_LOGIC;
 T : in STD_LOGIC;
 O : out STD_LOGIC;
end tri_state_buffer_top;

architecture Behavioral of tri_state_buffer_top is
begin
 O <= I when (T = '0') else 'Z';
end Behavioral;

LAB TRISTATE

Multiplexer

• A Mux selects one signal among 2𝑛 (𝐷𝑖) thanks to 𝑛 address lines (𝑆𝑗)

• A Demux applies the inverse operation

• 4 to 1 multiplexer in VHDL

Multiplexer

entity mux is
 port (a, b, c, d: in std_logic;
 s: in std_logic_vector(1 downto 0);

y: out std_logic;
end entity mux;

architecture Behavioural of mux is
begin
 y <= a when s = "00" else
 b when s = "01" else
 c when s = "10" else
 d when s = "11" else
 'X';
end architecture Behavioural;

LAB MUX

Exercise

• Write a n-bit 1 to 4 demultiplexer of an n-bit input

Demux
1 to 4

n-bit

n-bit

Exercise

• Write a n-bit 1 to 4 demultiplexer of an n-bit input

• Extend the demultiplexer to a generic 1 to m demultiplexer

Demux
1 to m

n-bit

n-bit

Exercise

• Write a n-bit 1 to 4 demultiplexer of an n-bit input

• Extend the demultiplexer to a generic 1 to m demultiplexer

• Instantiate it in synthesizable top module (n=3, m=4) and simulate it

Demux 1 to 4

Demux
1 to m

3-bit

3-bit

EX DEMUX

Memory elements

• If both inputs are at 1, the circuit keep memory of the previous state

• Latch

𝑨 𝑩 𝑸𝟐 𝑸𝟏

0 0 1 1

1 0 1 0

0 1 0 1

1 1 𝑋 𝑋

Memory elements

• Flip-flop set-reset (S-R)
• A synchronization input t is added

• If t is not present the output doesn’t change

𝑺𝒏 𝑹𝒏 𝑸𝒏+𝟏
𝑸
𝒏+𝟏

0 0 𝑄𝑛 𝑄
𝑛

1 0 1 0

0 1 0 1

1 1 - -

𝑄𝑛+1 = 𝑄 𝑆 𝑅 + 𝑆 𝑅
𝑛
= 𝑆 + 𝑄 𝑅

𝑛

𝑆 𝑅 = 0

Memory elements

• Flip-flop J-K
• It removes the forbidden state

• Flip-flop D
• Only one input

𝑱𝒏 𝑲𝒏 𝑸𝒏+𝟏 𝑸
𝒏+𝟏

0 0 𝑄𝑛 𝑄
𝑛

1 0 1 0

0 1 0 1

1 1 𝑄
𝑛

𝑄𝑛
𝑄𝑛+1 = 𝑄 𝐽 𝐾 + 𝐽 𝐾 + 𝑄 𝐽 𝐾

𝑛
= 𝑄 𝐾 + 𝑄 𝐽

𝑛

𝑫𝒏 𝑸𝒏+𝟏 𝑸
𝒏+𝟏

0 0 1

1 1 0𝑄𝑛+1 = 𝐷𝑛

Memory elements

• D Flip-flop in VHDL

entity RisingEdge_DFlipFlop is
 port(
 Q : out std_logic;
 Clk :in std_logic;
 D :in std_logic
);
end RisingEdge_DFlipFlop;

architecture Behavioral of RisingEdge_DFlipFlop is
begin
 process(Clk)
 begin
 if(rising_edge(Clk)) then
 Q <= D;
 end if;
 end process;
end Behavioral;

• Usually, all the assignments and instantiations in VHDL are concurrent

• Sequential statements can be used in sub-program (procedure and function) or processes

VHDL sequential

architecture Sequential of

priority is

begin

 process (a) is

 begin

 if a(3) = '1' then

 y <= "11";

 valid <= '1';

 elsif a(2) = '1' then

 y <= "10";

 valid <= '1';

 elsif a(1) = '1' then

 y <= "01";

 valid <= '1';

 elsif a(0) = '1' then

 y <= "00";

 valid <= '1';

 else

 y <= "00";

 valid <= '0';

 end if;

 end process;

end architecture Sequential;

entity priority is

 port (a: in std_logic_vector(3 downto 0);

 y: out std_logic_vector(1 downto 0);

 valid: out std_logic);

end entity priority;

architecture Concurrent of priority is

begin

 y <= "11" when a(3) = '1' else

 "10" when a(2) = '1' else

 "01" when a(1) = '1' else

 "00" when a(0) = '1' else

 "00";

 valid <= '1' when a(0) = '1' or a(1) = '1'

 or a(2) = '1' or a(3) = '1' else

'0';

end architecture Concurrent;

architecture Sequential2 of

priority is

begin

 process (a) is

 begin

 valid <= '1';

 if a(3) = '1' then

 y <= "11";

 elsif a(2) = '1' then

 y <= "10";

 elsif a(1) = '1' then

 y <= "01";

 elsif a(0) = '1' then

 y <= "00";

 else

 valid <= '0';

 y <= "00";

 end if;

 end process;

end architecture Sequential2;

• Usually, all the assignments and instantiations in VHDL are concurrent

• Sequential statements can be used in sub-program (procedure and function) or processes

VHDL sequential

Process

Process

Process

Process

Process

• Usually, all the assignments and instantiations in VHDL are concurrent

• Sequential statements can be used in sub-program (procedure and function) or processes

VHDL sequential

Process

Process

Process

Process

Process

LAB MEMORY ELEMENTS

Sequential circuits

• Usually, memory elements are controlled by logic functions

• Examples are counters, shift registers…

combinatorial
logic

sequential
logic

Counter

• Design a 4-bit counter

• 𝐴𝑛+1 = 𝐴
𝑛

• 𝐵𝑛+1 = 𝐴𝐵 + 𝐴𝐵
𝑛

• 𝐶𝑛+1 = 𝐶 𝐴 + 𝐵 + 𝐶𝐴𝐵
𝑛

• 𝐷𝑛+1 = 𝐷 𝐴 + 𝐵 + 𝐶 + 𝐷𝐴𝐵𝐶
𝑛

• 4 FFs and 4 LUTs

𝑫𝒏 𝑪𝒏 𝑩𝒏 𝑨𝒏 𝑫𝒏+𝟏 𝑪𝒏+𝟏 𝑩𝒏+𝟏 𝑨𝐧+𝟏

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 0 0 1 1 0 1 0

1 0 1 0 1 0 1 1

1 0 1 1 1 1 0 0

1 1 0 0 1 1 0 1

1 1 0 1 1 1 1 0

1 1 1 0 1 1 1 1

1 1 1 1 0 0 0 0

Counter

• Counter in VHDL

architecture Behavioral of Counter is
signal count : unsigned(3 downto 0) :=(others => '0');
begin
 process(Clk, count)
 begin
 if(rising_edge(Clk)) then
 count <= count + 1;
 end if;
 end process;

O <= std_logic_vector(count);
end Behavioral;

Shift register

• It is used to shift a signal

• Its design can be obtained by the sequential table

• Without feedback can be used to access in parallel to a serial data or
to serialize a parallel data

• Each cell can have a multiplexer to choose if shifting the bit or loading
a new bit

𝐶0

𝐵0𝐴0

𝑆0

𝐶1

SR SR

SR

D

Shift register

• Shift register in VHDL

sreg : process(clk, rst)
begin
 if (rst='1') then
 r_data <= (others=>(others=>'0'));
 elsif (rising_edge(clk)) then
 r_data(0) <= i_data;
 for i in 1 to r_data'length-1 loop
 r_data(i) <= r_data(i-1) ;
 end loop;
 end if;
end process;

Attributes

LAB SEQUENTIAL CIRCUITS

Extended counter

• Goal: make a counter able to increase by one/three or decrease
by one/three depending on a control
• +1/+3/-1/-3 modes

• Use the leds as counter display

• Generate internally a control that periodically change

• Simulate

• Implement
• Upload the bitstream here

http://fpgatrio.zapto.org

http://fpgatrio.zapto.org/

EX COUNTER

Memory

• It can be seen as an array of FF

• A decoder is used for addressing the data raw

• A tristate allows read/write operation

• Memory size = data width x 2address width

• Random Access Memory (RAM)
• If Read Only is called ROM

• It can contain a truth table -> It implements any
combinatorial function

• Synchronous RAM can be easily synthetized
in FPGA

D

D

D

𝐷𝑛

D

D

D

𝐷0.

𝐴𝑛…𝐴0

𝑅/𝑊

Memory

• RAM in VHDL

architecture Behavioral of ram_ent is
 type ram_type is array (31 downto 0)
 of std_logic_vector (3 downto 0);
 signal RAM : ram_type;
 signal read_a : std_logic_vector(4 downto 0);
begin

 process (clk)
 begin
 if rising_edge(Clk) then
 if (we = '1') then
 RAM(to_integer(unsigned(a))) <= di;
 end if;
 read_a <= a;
 end if;
 end process;
 do <= RAM(to_integer(unsigned(read_a)));
end Behavioral;

LAB RAM

State machine

• A general schema for functions that control sequential logic take into
account external signals 𝐶 and produce control signals 𝑃
• Mealey state machine: P is function of C and Q

• Moore state machine: P is only function of Q

• Moore outputs are synchronous

combinatorial
logic

sequential
logic

𝐶

𝑃

𝐷 𝑄

VHDL state machine

• There are several ways of encoding a state machine
• One process (clocked process with a case statement)

• Two processes (clocked process for changing state, combinatorial process for
setting outputs)

• Three processes (clocked process for changing state, combinatorial process for
next state choice, combinatorial process for setting outputs)

• Other combinations of processes are also allowed

• Just a coding style

VHDL state machine

process(Clk) is
begin
 if rising_edge(Clk) then
 if Rst = ‘1' then
 State <= S0;
 Dout <= Value0;
 else

 case State is
 when S0 => if Condition0 then
 State <= S1;

Dout <= Value1;
 end if;
 when S1 => if Condition1 then
 State <= S0;

Dout <= Value0;
 end if;

when others => Dout <= Value0;
State <= S0;

 end case;
 end if;
 end if;
end process;

• One process state machine

VHDL state machine

process(Clk) is
begin
 if rising_edge(Clk) then
 if Rst = '1' then
 State <= S0;
 else

State <= NextState;
end if;

end if;
end process;

process(State, Condition0, Condition1) is
begin
 NextState <= State;

 case State is
 when S0 => Dout <= Value0;
 if Condition0 then
 NextState <= S1;
 end if;
 when S1 => Dout <= Value1;
 if Condition1 then
 NextState <= S0;

end if;
when others => Dout <= Value0;

NextState <= S0;
 end case;
 end if;
 end if;
end process;

• Two processes state machine

LAB FSM

FSM detecting sequences

• Design two FSMs
1. Johnson counter

2. Blink each full sequence of the first

• Simulate

• Implement
• Upload the bitstream here

http://fpgatrio.zapto.org

𝑨𝒏 𝑩𝒏 𝑪𝒏 𝑨𝒏+𝟏 𝑩𝒏+𝟏 𝑪𝐧+𝟏

0 0 0 1 0 0

1 0 0 1 1 0

1 1 0 1 1 1

1 1 1 0 1 1

0 1 1 0 0 1

0 0 1 0 0 0

http://fpgatrio.zapto.org/

EX FSM

	Slide 1: VHDL by Examples Andrea Triossi – University of Padova – INFN Padova
	Slide 2: Hardware description
	Slide 3: VHDL basic structures
	Slide 4: VHDL instantiation
	Slide 5: VHDL instantiation
	Slide 6: Standard logic
	Slide 7: ARTY A7
	Slide 8: LAB COMBINATORIAL
	Slide 9: Adder
	Slide 10: Adder
	Slide 11: Adder
	Slide 12: LAB RTL ADDER
	Slide 13: Type conversions
	Slide 17: Adder
	Slide 18: Adder
	Slide 19: LAB ARITHMETIC ADDER
	Slide 20: Tristate
	Slide 21: Tristate
	Slide 22: LAB TRISTATE
	Slide 23: Multiplexer
	Slide 24: Multiplexer
	Slide 25: LAB MUX
	Slide 26: Exercise
	Slide 27: Exercise
	Slide 28: Exercise
	Slide 29: EX DEMUX
	Slide 30: Memory elements
	Slide 31: Memory elements
	Slide 32: Memory elements
	Slide 33: Memory elements
	Slide 34: VHDL sequential
	Slide 35: VHDL sequential
	Slide 36: VHDL sequential
	Slide 37: LAB MEMORY ELEMENTS
	Slide 38: Sequential circuits
	Slide 39: Counter
	Slide 40: Counter
	Slide 41: Shift register
	Slide 42: Shift register
	Slide 43: Attributes
	Slide 44: LAB SEQUENTIAL CIRCUITS
	Slide 45: Extended counter
	Slide 47: EX COUNTER
	Slide 48: Memory
	Slide 49: Memory
	Slide 50: LAB RAM
	Slide 51: State machine
	Slide 52: VHDL state machine
	Slide 53: VHDL state machine
	Slide 54: VHDL state machine
	Slide 55: LAB FSM
	Slide 56: FSM detecting sequences
	Slide 58: EX FSM

