The SuperCDMS Experiment at SNOLAB

Sukeerthi Dharani

On behalf of the SuperCDMS collaboration

15th International Workshop on the Identification of Dark Matter IDM2024 10 July, 2024

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

SuperCDMS collaboration

SuperCDMS https://www.snolab.ca/experiment/supercdms/

SuperCDMS experiment

- Super Cryogenic Dark Matter Search experiment
- Use <u>semiconductor</u> crystal detectors Si and Ge
- Operate at <u>cryogenic</u> temperature
- Measure energy deposition in the form of <u>phonons and ionization</u>
- Search for <u>sub-GeV DM</u>
- Recent publications:
 - First measurement of the nuclear-recoil ionization yield in silicon at 100 eV // arXiv:2303.02196
 - A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility // arXiv:2203.08463 (Snowmass)
 - Effective Field Theory Analysis of CDMSlite Run 2 Data // arXiv:2205.11683
 - Investigating the sources of low-energy events in a SuperCDMS-HVeV detector // arXiv:2204.08038
 - Constraints on dark photons and axionlike particles from the SuperCDMS Soudan experiment // arXiv:1911.11905
 - Search for Low-Mass Dark Matter with CDMSlite Using a Profile Likelihood Fit // arXiv:1808.09098
 - A Search for Low-mass Dark Matter via Bremsstrahlung Radiation and the Migdal Effect in SuperCDMS arXiv:2302.09115

SuperCDMS SNOLAB experiment

DM2024

Detection principle

- Particle interactions produce electron-hole (eh) pairs and prompt phonons
- Voltage bias across detector allows eh pairs to drift, creating Neganov-Trofimov-Luke (NTL) phonons $E_{total} = E_{recoil} + (N_{eh} \cdot e \cdot V_{bias})$
- Energy from prompt and NTL phonons \rightarrow phonon sensor (QETs)
- Drifting eh pairs \rightarrow charge sensor (HEMTs)

QET: Quasiparticle Trap Assisted Electrothermal Feedback Transition Edge Sensor HEMT: High Electron Mobility Transistor

SuperCDMS detectors

High Voltage (HV)

- 12 phonon channels
- Large bias voltage (~100 V)
- NTL amplification
 - low threshold \rightarrow low mass DM
 - no ER/NR discrimination
- Energy resolution ~10 eV

Sukeerthi Dharani

SuperCDMS SNOLAB experiment

Interleaved Z-sensitive ionization phonon (iZIP)

- 12 phonon channels + 4 charge channels
- Small bias voltage (< 10 V)
- Measuring ionization + phonon
 - ER/NR discrimination
 - better background rejection

IDM2024

10 July 2024

SuperCDMS science search

Nuclear recoil

iZIP, ER background free >5 GeV/c²

iZIP, limited ER/NR discrimination >1 GeV/c²

HV, no discrimination

Electron recoil

HV, no discrimination

Absorption (dark photons, ALPs) HV, no discrimination

~1 eV/c² - 500 keV/c² (peak search)

~0.3 - 10 GeV/c²

~0.5 MeV/c² - 10 GeV/c²

Refer to arXiv:2203.08463 (Snowmass) for sensitivity forecast

Sukeerthi Dharani

SuperCDMS SNOLAB experiment

IDM2024

10 July 2024

SNOLAB underground laboratory

SuperCDMS SNOLAB

- Under construction at SNOLAB
- Dilution refrigerator ~15mK
- Class 2000 clean room

Sukeerthi Dharani

SuperCDMS SNOLAB experiment

IDM2024

10 July 2024

Sukeerthi Dharani

SuperCDMS SNOLAB experiment

IDM2024

10 July 2024

11

Clean room

SuperCDMS SNOLAB installation status

Cryogenics plant

SuperCDMS

Clean room

Radon filter plant

Sukeerthi Dharani

SuperCDMS SNOLAB experiment

IDM2024

10 July 2024

CUTE

CUTE **SuperCDMS** SuperCDMS SNOLAB installation status **Clean room** Shield base installation Cryogenics plant Radon filter plant Seismic platform 14

Sukeerthi Dharani

SuperCDMS SNOLAB experiment

IDM2024

10 July 2024

SuperCDMS SNOLAB installation status

Exciting times ahead!

Sukeerthi Dharani

IDM2024

SuperCDMS SNOLAB projected sensitivity for NRDM

- The projected sensitivities for Nuclear Recoil
 - Optimum interval dashed
 - Profile likelihood solid

	Germanium	Silicon			
ΗV	Low threshold for low mass DM, larger exposure Limited by tritium betas	Lowest threshold for low mass DM, sensitive for lowest DM masses Limited by ³² Si (and tritium) betas			
iZIP	ER/NR discrimination, understand Ge background Limited by exposure	ER/NR discrimination, understand Si background Limited by exposure			

- Aiming for world leading sensitivity to low mass (\lesssim 10 GeV/c²) DM
- Challenges: Understanding and modeling detector response, low-energy calibration

Sukeerthi Dharani

IDM2024

10 July 2024

SuperCDMS SNOLAB projected sensitivity for NRDM

- The projected sensitivities for Nuclear Recoil
 - Optimum interval dashed
 - Profile likelihood solid

	Germanium	Silicon			
ΗV	Low threshold for low mass DM, larger exposure Limited by tritium betas	Lowest threshold for low mass DM, sensitive for lowest DM masses Limited by ³² Si (and tritium) betas			
iZIP	ER/NR discrimination, understand Ge background Limited by exposure	ER/NR discrimination, understand Si background Limited by exposure			

- Aiming for world leading sensitivity to low mass ($\stackrel{\scriptstyle <}{_{\sim}}$ 10 GeV/c²) DM
- Challenges: Understanding and modeling detector response, low-energy calibration

Sukeerthi Dharani

IDM2024

10 July 2024

SuperCDMS SNOLAB projected sensitivity for ERDM

- PLR-based 90% CL projected sensitivities for Electron Recoil
- HV detectors: Si / Ge

Tower testing at CUTE, SNOLAB

• Cryogenic Underground TEst facility

Sukeerthi Dharani

SuperCDMS SNOLAB experiment

IDM2024

10 July 2024

Tower testing at CUTE, SNOLAB

- Cryogenic Underground TEst facility
- SuperCDMS HV tower hosting 4 Ge and 2 Si detectors testing completed in Mar'24

CUTE

SuperCDMS

Clean room

Tower testing at CUTE, SNOLAB

- Cryogenic Underground **TE**st facility
- SuperCDMS HV tower hosting 4 Ge and 2 Si detectors testing completed in Mar'24 🗸
- First time testing in low background environment
- Ongoing analysis efforts, possibility of early results next year.

Sukeerthi Dharani

Summary

- → SuperCDMS experiment: direct DM detection, targeting sub-GeV DM masses
- → Under construction at SNOLAB
- → Cryogenic <u>Si/Ge</u> detectors
 - iZIP: background rejection
 - HV: low threshold
- → Detector tower testing recently completed at CUTE facility at SNOLAB
 - Several analyses in-progress to better understand our detectors
 - Expecting early science results by next year!
- → SuperCDMS SNOLAB experiment <u>commissioning in 2025</u>

Stay Tuned!

SuperCDMS SNOLAB: Backgrounds

<u>Cosmogenic</u>

- Cosmic ray muons
- Spallation neutrons
- Activated materials

Environmental

- Airborne radon & daughters
- Radio-impurities in materials

"Singles" Background Rates	Electron Recoil				Nuclear Recoil ($\times 10^{-6}$)	
(counts/kg/keV/year)	Ge HV	Si HV	Ge iZIP	Si iZIP	Ge iZIP	Si iZIP
Coherent Neutrinos					2300.	1600.
Detector-Bulk Contamination	21.	290.	8.5	260.		
Material Activation	1.0	2.5	1.9	15.		
Non-Line-of-Sight Surfaces	0.00	0.03	0.01	0.07	-	-
Bulk Material Contamination	5.4	14.	12.	88.	440.	660.
Cavern Environment					510.	530.
Cosmogenic Neutrons					73.	77.
Total	27.	300.	22.	370.	3300.	2900.

Phys. Rev. D 95, 082002

SuperCDMS SNOLAB projected sensitivity for ER-LDM

- PLR-based 90% CL projected sensitivities for Electron Recoil
 - for heavy mediator (form factor F(q) = 1, left)
 - a light mediator (form factor $F(q) = 1/q^2$, right)
- HV detectors: Si: blue; Ge: red

