

First Measurement of Coherent Elastic Neutrino Nucleus Scattering of Solar ⁸B Neutrinos in XENONnT

15th International Workshop on the Identification of Dark Matter July 8-12, 2024, L'Aquila

Tsinghua University

Fei Gao, Tsinghua University on behalf of the XENON Collaboration

XENONnT Solar ⁸B CEvNS Search Results

measurement via CEvNS

- 200+ scientists
- 29 institutions
- 12 countries •

XENON Collaboration

XENONnT Under the Gran Sasso Shield

Elastic Scattering of Dark Matter and Neutrinos

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

Coherent effects of a weak neutral current

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10^{-38} cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

D. Akimov et al, Science 357 (2017)

XENONnT as a Solar Neutrino Detector via CEvNS

and WIMPs Dark Matter, etc.

Science Data

Stability of XENONnT During Science Runs

The stability of XENONnT is well established in both SR0 and SR1

Liquid Xenon Purity During Science Runs

Calibration with Mono-energetic Electronic Recoils

Calibration with YBe Neutron Source

Excellent match between Data and Model

NEST model is constrained by YBe data to predict the light and charge yield in the ⁸B CEvNS energy range at the XENONnT drift field

⁸B CEvNS: Signal Region of Interest

A hit usually corresponds to a photon hitting the PMT and is recorded by our DAQ and software

S2 threshold of 120PE is used to reject high isolated S2 background below it.

Fiducial Volume and Exposure

Science Run	Livetime [Years]	Fiducial Mass [Tonne]	Exposure [Ton-Year]
SR0	0.296	3.97	1.17
SR1	0.571	4.10	2.34
SR0+SR1	0.867		3.51

Events around the supporting wires are removed due to:

- high Background rate
- Insufficient modeling of S2

Accidental Coincidence (AC) Background

Accidental Coincidence Background in XENONnT for Low Energy **Nuclear Recoil Search**

Jul 8, 2024, 3:00 PM

() 20m

Palazzo dell'Emiciclo, Sala Ipogea

Speaker

Liu (Tsinghua University)

Component	Sideband Data	Search Data
AC - SR0	123.7	7.48
AC - SR1	350	17.77
8 B	< 2	11.93

The final likelihood analysis includes:

- 4D space (81 bins) for AC discrimination
- 2 Science Runs

Analysis Validation with ³⁷Ar

AC-Sideband Unblinding

The S2 threshold is increased to 120 PE after sideband unblinding!

Science Run	Expectation	Observation	P-value (4D)	Deviation from expectation
SR0	122.7	121	0.33	-0.15 sigma
SR1	290.0	310	0.252	1.17 sigma

The remaining differences are considered potential systematical uncertainties! (<10%)

Electronic Recoil Background

Science Run CEvNS ROI (220Rn Model) CEvNS ROI (NESTv2 Model)

SR0	0.13	~0
SR1	0.56	~0

Final background prediction (conservative):

- SR0: 0.13 ± 0.13 Events
- SR1: 0.56 ± 0.56 Events

The XENONnT Neutron Veto: performances without and with Gd-doping.

📰 Jul 8, 2024, 5:10 PM

🕓 20m

Palazzo dell'Emiciclo, Sala Ipogea

Speaker

Arco Selvi (Istituto Nazionale di...

Uncertainty is determined with sideband data tagged with Neutron Veto

Direct detection

Parallel talk

Neutron Background

Final background prediction:

- SR0: (0.13±0.07) Events
- SR1: (0.33±0.19) Events

A radial cut is placed to reduce the background on the inner surface of the PTFE panels

Surface Background

Final background prediction:

- SR0: < 0.12 Events
- SR1: < 0.23 Events

A negligible component in this analysis

Final Prediction of ⁸B Signal and Background

of ~ 2σ , with a counting-only analysis

Projected Discovery Potential of ⁸B Signals

We expect to see solar ⁸B neutrinos at >3(2) sigma significance with a probability of 0.48 (0.80), with a full 4-D analysis

Results from Unblinding, 07/03/2024

Data agrees with the signal + background expectation!

Results from the Unblinding

No significant deviation to the background and signal expectation!

	Component	Background only fit	Background + ⁸ B fit	Nominal Expectatio
(SR0)	AC - SR0	7.55	7.36	7.48 ± 0.5
(SR1)	AC - SR1	18.26	17.90	17.77 ± 1.2
	ER	0.74	0.54	0.68 ± 0.6
	NR	0.50	0.45	0.47 ± 0.32
	Total Background	27.05	26.24	26.4 ± 1.5
	⁸ B	_	10.71	11.9 ± 3.1
	Observed		37	

Visualization of Events — Piechart plots

The pie plots show which events occur in a more signal- or background-dominated region from our expectation.

Results from Unblinding

The background-only hypothesis is disfavored at 2.73σ

solar ⁸B flux measurement via CEvNS as [1.72, 10.6] x 10⁶ cm⁻² s⁻¹ at 90% C.L.

First Measurement of CEvNS with a Xe Target $\sigma \propto Q_W^2 \propto (N - (1 - 4\sin^2\theta_W)Z)^2$ $\Rightarrow \sigma \propto N^2$ (COHERE) 10³ Ē ux-averaged cross section (10⁻⁴⁰ cm²) 10² co.vnie Ge 10 Ar E Xe Na IE Ar SNS, FF=1 SNS 0-Ge Solar Reactor Si COHERENT XENON C 🏶 V U S CONUS (Ge) Ш 10⁻³ CONNIE (Si) E 20 30 60 70 10 80 40 50 90 0 Figure credit: Kate Scholberg

Summary and Outlook

Publication in preparation

XENONnT measures the CEvNS signal in Xe from solar ⁸B neutrinos for the first time!

Observed discovery significance — Median discovery significance Band containing 68 % & 95 % of toys

With more exposure, we expect to measure the solar ⁸B neutrino signal at higher significance and to better constrain the ⁸B neutrino flux

