QUAX – QUaerere AXion

Main Activity

 Photon coupling: Due to the motion of the solar system in the galaxy, Dark Matter axions are converted into rf photons inside a resonant cavity immersed in a strong magnetic field

QUAX Experiment

- The INFN has approved the QUAX experiment to run an observatory for searching axion via the axion-photon coupling
- The R&D activity on the axion electron coupling will proceed with low priority
- **Two haloscopes** will be built: one in **Legnaro** and the other in **LNF**

Quax 2025 projection: 2 GHz scan to the KSVZ line

	LNF	LNL	
Magnetic field	9 T	14 T	
Magnet length	40 cm	$50 \mathrm{~cm}$	
Magnet inner diameter	9 cm	$12 \mathrm{~cm}$	
Frequency range	8.5 - 10 GHz	9.5 - 11 GHz	
Cavity type	Hybrid SC	Dielectric	
Scanning type	Inserted rod	Mobile cylinder	
Number of cavities	7	1	
Cavity length	0.3 m	0.4 m	
Cavity diameter	$25.5 \mathrm{~mm}$	58 mm	
Cavity mode	TM010	pseudoTM030	
Single volume	$1.5 \cdot 10^{-4} \mathrm{m}^3$	$1.5\cdot10^{-4}~\mathrm{m^3}$	
Total volume	$7 \otimes 0.15$ liters	0.15 liters	
Q_0	300 000	1 000 000	
Single scan bandwidth	630 kHz	30 kHz	
Axion power	$7\otimes 1.2\cdot 10^{-23}~{\rm W}$	$0.99 \cdot 10^{-22} \text{ W}$	
Preamplifier	TWJPA/INRIM	DJJAA/Grenoble	
Operating temperature	30 mK	30 mK	

- The LNL haloscope will be based on dielectric cavities, travelling wave parametric amplifiers and 14 T magnet
- Cryogenic system: Dilution Refrigerator to work below 60 mK

QUAX: PD-LNL RUN 2024 - Parameters

Magnetic field ON Cavity frequency f_c = 10.15– 10.21 GHz Noise temperature T_{sys} = 1.1 – 1.5 K Quality factor Q_0 = 60000 - 80000 Antenna coupling β = 1.4 – 1.8 Cavity Volume V = 1.06 liters Estimated efficiency C_{030} = 0.4 Effective field B²=50.89 T² Axion mass m_a = 44.9 µeV Typical Integration time t_m = 3800 s

Expected axion power in a 10 kHz window **Pa = 6.0e-24 W**

```
Expected sensitivity (Dicke) in a 10 kHz window \sigma_P= 2.5e-23 W
```


Cavity Developments 1

Three different novel cavity designs are being studied to maximize $C^2 V^2 Q$: A. Empty "double-shell" cylindrical cavity with simple tuning B. High volume, high C factor single-shell dielectrical cavity C. High volume, high C factor empty "polygonal" cavity

A tunable clamshell cavity for wavelike dark matter searches

Cite as: Rev. Sci. Instrum. 94, 045111 (2023); doi: 10.1063/5.0137621 Submitted: 4 December 2022 • Accepted: 31 March 2023 • Published Online: 19 April 2023	View Online	Export Citation	CrossMark

C. Braggio, ^{1,2,a)} (D) G. Carugno,² (D) R. Di Vora, ^{3,b)} (D) A. Ortolan, ³ (D) G. Ruoso, ³ (D) and D. Seyler⁴ (D)

AFFILIATIONS

- ¹ Dipartimento di Fisica e Astronomia, Padova, Italy
- ²INFN, Sezione di Padova, Padova, Italy
- ³INFN, Laboratori Nazionali di Legnaro, Legnaro, Padova, Italy
- ⁴Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

^{a)}Author to whom correspondence should be addressed: caterina.braggio@unipd.it ^{b)}divora@pd.infn.it

Cavity developments 2

B

Tunable Cavity (B) in DU System

Right cylindrical hybrid cavity

Copper shell Sapphire cylinder inside

Clamshell mechanism for tuning

Base frequency 10.2 GHz

Q factor at about 80 000 at cryogenic temp

LamedNew

Open cavity with sapphire cylinder

Antenna

Cavity in the dilution insert

New Sliding RF contact under Tests

TWPA Amplifier

Large bandwidth ~ 1 GHz

Noise T ~ 1-2 photons

This allowed us to start testing **a new Quantum Limited rf amplifier** provided us from Nicholas Roch (Grenoble)

$$T_{\rm sys} \approx \frac{h\nu_c}{2k_B} \coth \frac{h\nu_c}{2k_B T_c} + \Lambda_1 T_{\rm TWPA} + \frac{\Lambda_2 \Lambda_1}{G_{\rm TWPA}} T_{\rm HEMT}$$

T_{noise} = 1 – 1,5 Kelvin with 8 Tesla Field

@ 10 GHz

Devices for Automation

Original idea published in A haloscope amplification chain based on a traveling wave parametric amplifier - RSI 2022

Long runs require automatization of all procedures: antenna coupling, cavity tuning, noise temperature measurement

Computer controlled motors for cavity tuning and antenna coupling optimization

Devices for automation

Python based programming for run control and data acquisition

New ADC board with up to 20 MS/s sampling rate – run rate 4.4 MS/s

Semi-automatic run control:

By Operator:

- Cavity tuning
- TWPA amplifier tuning

Computer controlled:

- Cavity mode characterization (Q₀, beta)
- RF characterization (gain, noise)
- Data acquisition and storage

Data are transferred to INFN Cloud for offline analysis

Control board with rf instrumentation racks

QUAX RUN 2024

Total run time 3 weeks800002 separate weeks for data taking75000May 28th to May 30th- 48 h of field0June 11th to June 14th- 90 h of field0No00000

Dead intervals due to safety reasons and shift organization

Covered span: 14.7 MHz Maximum tuning: 58.45 MHz Ratio: 25% of available scan

Effective scan rate about

100 kHz/hour

2.5 MHz/day

QUAX RUN 2024

Analysis in progress

Expected sensitivity with measured parameters in axion coupling normalized to KSVZ model

Scaling: Linear B SQRT Q

This result shows that with the expected improvements on the cavity and field the QUAX design sensitivity is within reach

Search for Axion dark matter with the QUAX–LNF Tunable Haloscope

 $m_a \,[{
m eV}]$

Next Generation Haloscope – Single Photon Detection

Joint effort between QUAX (LNL, PD), Padova Dept. of Excellence, SQMS, Quantronics Group Saclay

Linear amplifier irreducible limit Standard Quantum Limit

$$P_{\rm SQL} = h\nu_a \sqrt{\Delta\nu_a/t}$$

$$\mathrm{SNR}_{\mathrm{SQL}} = \frac{P_a}{h\nu_a} \sqrt{\frac{t}{\Delta\nu_a}}$$

Photon Counter PC limited by dark count Γ_{DC} rate and efficiency η

$$\mathrm{SNR}_{\mathrm{PC}} \approx \frac{\eta P_a}{h\nu_a} \sqrt{\frac{t}{\Gamma_{\mathrm{dc}}}}$$

Improvement in scanning speed with SMPD

$$\eta^2 \frac{\Delta \nu_a}{\Gamma_{
m dc}}$$

Single Photon Detection – First Test @ Saclay

SMPD (top) and cavity

SC magnet

https://arxiv.org/abs/2403.02321

- hybrid (normal-superconducting) cavity 7.37 GHz, tunable, $Q_0 = 9 \times 10^5$
- T=14 mK delfridge base temperature @ Quantronics lab (CEA, Saclay)

 \odot 2T-field

- triplet of rods controlled by a nanopositioner mounted at the MC stage to probe for different axion masses
- passive protection by the B-field for SMPD \odot and TWPA

- Developed a dedicated protocol
- Dark count at the 100 Hz level
- System stability up to 10 minutes

20 Times faster then SQL based Amplifier with a Dark Count @ 10 Hz (new Devices) 100

Haloscope with SMPD in Italy

Paris run was successful the device will be mounted @ LNL/PD

Electronics layout

QUAX: LNL-LNF Future Steps

Short Term Program:

- Proceed with automation of data acquisition and control
- Proceed with installation of safety controls of dilution unit based on PLC
- LNL RUN with TWPA @ about 10.2 GHz, with T_n = 1.2 K and complete scanning with the remaining 40 MHz
 AUTUMN 2024
- LNF RUN with JPA @ about 9 GHZ continuos scanning over 50 MHz Autumn 2024
- Realization of improved cavities design, same scheme but different frequencies + REBCO Tapes
- New Cavity approach for large tuning range under test
- The 14 T magnet @ LNL competition has been completed, but Its installation only in 2025

PD-LNL Haloscope – High Frequency Tunable Cavities

Single crystal dielectric - copper cavity Gap on top plate for safety

Upper end cap details

Rf sliding contact