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Classical (local) DM tests
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(merging) galaxy clusters

Classical (local) DM tests
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Nowadays not the leading rationale
to argue for the existence of DM.

Direct/indirect searches for DM
are mostly done within these DM
labbs: these observations provide
key ingredients, e.qg., DM density
and velocity profiles.



Cosmological evidence for DM

Dynamics of
the Universe,
l.e. Oy, learning
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matter”’, 1.e. Qy,
from BBN to
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Single snapshot of density
perturbations, e.g., the CMB:
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The leading rationale to argue for
the existence of DM and the tool
to precisely measure it.

“Concordance” cosmology:

Qpyvh? = 0.1200 & 0.0012
[Planck Coll., arXiv:1807.06209]
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successes, also few discordances. Most relevantly for dark matter/dark sector:
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The ACDM model under extreme scrutiny may show, on top of the astonishing
successes, also few discordances. Most relevantly for dark matter/dark sector:

- A small-scale crisis of the CDM paradigm (in the deep non-linear regime,
likely where baryonic component modelling do count)?

observational cores versus predicted missing satellites, in particular in the

cusps in the density profile of small count for the most massive sub-halos
dark-matter-dominated galaxies: in the Milky Way and the Local Group
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“Surprises” versus concordance cosmology (2)

The ACDM model under extreme scrutiny may show, on top of the astonishing
successes, also few discordances. Most relevantly for dark matter/dark sector:

- Tensions in cosmological parameters?

indirect versus direct measurements  early Universe versus late Universe
of Hy - 5o discrepancy between determination of the normalisation of
Planck CMB and SHOES SNla + the matter power spectrum Sg

much more: - ~ 3o discrepancy between CMB
lat ALDM and weak lensing:

- T T T T T
BAO+BBN Sound horlzon ~— CMB Planck TT,TE,EE+lowE =& Aghanim et al. (2020d)
68.3+1.2 <t CMB Planck TT,TE,EE+lowE+kk -~ Aghanim et al. (2020d)
ACT 2020 (\I CMB ACT+WMAP —®— Aiola et al. (2020)
7.9+ 1. Indirect 8 |
E 840, + v, DES Y3 - DES Collaboration et al. (2022)
SNIa+Cepheids E)SHOES) Di t 3 v + 0404 + ¥4, KiDS-1000+BOSS+2dFLenS - Heymans et al. (2021)
736:': 1. 1rec Q Kby + 840, unWISE+Planck .- Krolewski et al. (2021)
SNIa+TRGB (SHOES) Q Kdg + 846, DESI+Planck — White et al. (2022)
72.4+£2.0 .. ; k6, KiDS+DES+eBOSS+DELS-+Planck - Garcia-Garcia et al. (2021)
SNIa+TRGB (CCHP) (: 704 3, + kb, + ky DES+SPT+Planck —— DES Collaboration et al. (2019)
698 + 19 _O P; BOSS sim. based —_— Kobayashi et al. (2021)
HOLICOW *C:U P; + B BOSS — Philcox & Ivanov (2022)
73_3 :l: 1_7 t & BOSS _— Zhang et al. (2022)
Masers Q P; eBOSS —_— Ivanov (2021)
73.9+3.0 E & + Py BOSS — This work
O & + Py + kdg BOSS+Planck — This work
1 1 1 1 1
@) 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Surface Brightness Fluctuations —~ S
733425 8

65.0 67.5 70.0 72.5 75.0 775 80.0 [Chen’ White, DeRose & Kokron, 2022]

Expansion rate Hy [km/s/Mpc]



“Surprises” versus concordance cosmology (2)

The ACDM model under extreme scrutiny may show, on top of the astonishing
successes, also few discordances. Most relevantly for dark matter/dark sector:

- Tensions in cosmological parameters?

indirect versus direct measurements
of Hy - 5o discrepancy between

Planck CMB and SHOES SNIla +

much more:
flat ACDM
BAG+BEN Sound horizon
68.3+1.2
ACT 2020
79%1. Indirect
SSEEEE™Y Direc

SNIa+TRGB (SHOES)
72.4+2.0

SNIa+TRGB (CCHP)
69.8+1.9

Surface Brifhtness Fluctuations

65.0 67.5

Expansion rate Hy [km/s/Mpc]

70.0

72.5

75.0

715

80.0

[compilation: Poulin, 2024]

early Universe versus late Universe
determination of the normalisation of
the matter power spectrum Sg
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“Surprises” versus concordance cosmology (3)

The ACDM model under extreme scrutiny may show, on top of the astonishing
successes, also few discordances. Most relevantly for dark matter/dark sector:

- Surprise from the JWST discovery of the existence of early massive galaxies
with stellar masses way larger than what expected within the ACDM model;
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“Surprises” versus concordance cosmology (4)

The ACDM model under extreme scrutiny may show, on top of the astonishing
successes, also few discordances. Most relevantly for dark matter/dark sector:

- DESI baryon acoustic oscillation measurements favouring dynamical dark
energy (assuming a time varying equation of state: w(a) = wo + wg (1 — a)
at ~ 3o level the quadrant wy > —1, w, < 0 is preferred).
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Insights on the “true nature” of dark matter and dark energy?



Rephrasing DM as a particle physics problem

In the ACDM model the DM term is scale free: there is no insight on how to
reformulate the DM puzzle in terms of elementary particles (what mass”? what
interaction strength with ordinary matter or among themselves?)
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interaction strength with ordinary matter or among themselves?)

The small-scale crisis pointing to an excess of power on small scales (or
maybe to baryonic components/baryonic feedback not properly treated in the
simulations). Remove power by introducing a new physical scale associated
to DM particles: a free-streaming scale (e.g. warm dark matter); a self-
interaction scale; a macroscopic “quantum” scale (e.g. dark matter as a BEC);
a large DM-baryon or DM-photon interaction scale; ...
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Suppressing Sy at late times, letting dark matter decay or cannibalise itselt?
Play with subdominant components which again dump power (self-interacting
DM, very light axion-like DM, ...)7



Rephrasing DM as a particle physics problem

In the ACDM model the DM term is scale free: there is no insight on how to
reformulate the DM puzzle in terms of elementary particles (what mass”? what
interaction strength with ordinary matter or among themselves?)

The small-scale crisis pointing to an excess of power on small scales (or
maybe to baryonic components/baryonic feedback not properly treated in the
simulations). Remove power by introducing a new physical scale associated
to DM particles: a free-streaming scale (e.g. warm dark matter); a self-
interaction scale; a macroscopic “quantum” scale (e.g. dark matter as a BEC);
a large DM-baryon or DM-photon interaction scale; ...

Suppressing Sy at late times, letting dark matter decay or cannibalise itselt?
Play with subdominant components which again dump power (self-interacting
DM, very light axion-like DM, ...)7

Steadily moving towards a scenario in which, rather than the SM + a DM
particle, you have SM + a multicomponent dark sector in which address the
dark matter problem and much more (e.g. the Hy tension with some early dark
energy component???).



The real of (moderately motivated) prejudices

As a starting assumption, consider a dark sector in terms of
elementary particles, to be possibly treated in the dilute limit (two-
body interactions dominating over multi-body interactions).

Disclaimer: this is not the only possible extrapolation! In this talk we
will not consider, e.g.: scenarios with “macroscopic granularities”,
such as primordial black holes - possibly still viable; or scenarios In
which gravity is not described by general relativity - no “DM free”
variant found so far matching observations on all scales.



The real of (moderately motivated) prejudices

As a starting assumption, consider a dark sector in terms of
elementary particles, to be possibly treated in the dilute limit (two-
body interactions dominating over multi-body interactions).

Disclaimer: this is not the only possible extrapolation! In this talk we
will not consider, e.g.: scenarios with “macroscopic granularities”,
such as primordial black holes - possibly still viable; or scenarios In
which gravity is not described by general relativity - no “DM free”
variant found so far matching observations on all scales.

Two extra guidelines have been the main model building prejudices:

1) we need a “natural” mechanism to generate dark matter in
the early Universe

2) there are some aspects which are not satisfactory in the
standard model of particle physics, addressing such open
iIssues will lead to an extension of the standard model
embedding dark matter as well.
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SM of cosmology & BSM of particle physics

A common (particle physicist) roadmap some years ago:

) A (set of) BSM state(s) to be found at colliders;

il) Direct detection experiments to demonstrate that the
(lightest) state is stable and makes the dark matter.

A trigger from naturalness versus the hierarchy problem, and
thermal relic WIMPs as natural dark matter candidates.

Thermal relics directly coupled to the baryon/photon primordial
pbath: x x <+ SM SM (with SM is some lighter Standard Model state)

I'Ty) ~ H(T _ _2 _
(...f). (f) - Qth - 3-107%"cm3s~ 1

<UAU>T:Tf

WIMP miracle: “fixed” DM pair annihilation
Cross section into “visible” particles.

A recipe that can work below about 100 TeV
(unitarity limit [Griest & Kamionkowski 1990]; in
realistic models up to about 15 TeV) and
gets inefticient below about 1 GeV.
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SM of cosmology & BSM of particle physics

A common (particle physicist) roadmap some years ago:

) A (set of) BSM state(s) to be found at colliders;
il) Direct detection experiments to demonstrate that the
(lightest) state is stable and makes the dark matter.

A trigger from naturalness versus the hierarchy problem, and
thermal relic WIMPs as natural dark matter candidates.

Thermal relics: the familiar and So far, a scheme which has
beloved scheme lead only to tentative (and
L oy teense st e controversial) hints of signals:
’ e I ' the WIMP paradigm is well
X:@i :@: alive (and it will be hard to Kill
S direot it), however the “naturalness

de’rechon : y o :
S;njf;;;gy s;ngj;;gy trigger” is fading away,
making to some extent the
framework less appealing.

tttttttt
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Indirect detection

In principle a straightforward connection between annihilation in the
early Universe and in todays DM halos.

[latest update with 14-yr Fermi data,

Strong constraints from prompt McDaniel et al., 2023]

y-ray emission (continuum

10— 21 — ——rrr .
spectrum) from the local __ iSph Constraints _ OOE Contowrs 13y
population of dwarf spheroidal 10722 1 g5t camemin 0 T Do e . (a016) -
galaxies, ideal DM labs: very c+ Median Tt Di Manra ot a1, (2021)

10_23 | Karwin et al. (2017) -

large mass to light ratios, quiet
astrophysical environments,
relatively close.

In the same plot, models

compatible with the excess
detected by Fermi from the
Galactic Center [e.g. Fermi
collaboration, 2017], not an

10 il L L a3 aaal 1 L1 g aaaal 1 L1 1 11
ideal DM lab (is it due to MSPs? 10 10 10° 10
[e.q., latest: Manconi et al., M, [GeV]
2024]).
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[latest update with 14-yr Fermi data,
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10_23 | Karwin et al. (2017) -

large mass to light ratios, quiet
astrophysical environments,
relatively close.

In the same plot, models

compatible with the excess
detected by Fermi from the
Galactic Center [e.g. Fermi

collaboration, 2017], not an T L P UV IR
ideal DM lab (is it due to MSPs? 10' 107 10° \ 10%
[e.q., latest: Manconi et al., M, [GeV]

2024)). A window of

opportunity for CTAO
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Indirect detection, look for signatures

Still a chance to detect smoking gun signals, such as y-ray lines
(arising at loop level): x+x =7+ X

prominent in some specific
models, such as pure Wino DM,
and a target for CTAO in galactic
center observations:

[Magic Collaboration, 2022]
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Indirect detection, look for signatures

Still a chance to detect smoking gun signals, such as y-ray lines
(arising at loop level): x+x =7+ X

prominent in some specific still to be cross-checked against
models, such as pure Wino DM, other detection channels:

and a target for_CTAO in galactic [Hryczuk PU ot al.. 2014]
center observations: S S T
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[Magic Collaboration, 2022]
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Direct detection

Measuring the recoil energy in elastic (or inelastic?) scattering of
(local Milky Way halo population) dark matter particles off nuclei:

[Baudis & Profumo, PDG 2023]
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Measuring the recoil energy in elastic (or inelastic?) scattering of
(local Milky Way halo population) dark matter particles off nuclei:

Direct detection

[Baudis & Profumo, PDG 2023]
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Direct detection

Measuring the recoil energy in elastic (or inelastic?) scattering of
(local Milky Way halo population) dark matter particles off nuclei:
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Light mass “wall”:
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Direct detection (2)

Since several years, searches with noble liquid (mainly Xe) detectors
have taken the lead in the experimental effort (background rejection

+ scalability): m, = 50 GeV

. - e Best Limit (90% CL)

- steadily 10 = o XENONIO Sensitivity Goal
increasing the [ ZEPLIN-II

10 44 == bl
mass; T E :
- steadily §10_45 . o XENONI100
aiming at s F 20}/
improving the g 1074 Co - - PandaX-4T
background o F S ¥TH® XENONIT® @  XENONnT
rejection; 8 1077 _oe1z
- to and past -

: O -
the neutrino 107 & neutrino fog (1 evt) . g noaX XTi
ng: E neutrino floor, Billard (20 14)\ DAR.WIN/ KLZD
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[Snowmass 2021, arXiv:2203.08084, adapted by Baudis 2024]
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Direct detection (3)

Current limits versus a representative set of dark matter models
within the standard WIMP paradigm, namely states in thermal
equilibrium with the SM heat bath, (mostly) because carrying a SM
gauge charge (e.g.: SUSY, extended Higgs sectors, ...):

- covering the full 10739
expected mass
range; 10411
- possibly extending & | |
to very small cross cE> 10743 - Direct Detection
sections (crossing  $ N
10"
symmetry not 3 | 3
fulfilled); 2
10—47_ o) o o
- mOStly ﬂOt *CY)\ NMSSM - 1 1a =
| (o]
addressing the 40 o
: )= NMSSM - 2 Z
hierarchy problem: | | -
1 10 100 1000 10%
Mpwm [GeV]

[Snowmass 2021, arXiv:2203.08084, & refs. therein]
16



Enlarging the parameter space

A dark sector containing multiple states offers the possibility of
having multiple variants to the standard WIMP paradigm, such as:
[very incomplete lists of models and references]

ethere is a dark sector thermal bath (with T, possibly different
from T,), with thermalisation and freeze-out: x +x < ¥+

led by extra interactions (e.g.: extra U(1) p with vp mediator)

ethere is a different process sustaining (dark) thermal
populations, such as, e.9.,:
- coannihilations: xi+xj <> ¥+  [Griest & Seckel, 1991]
- semi-annihilations: x +% <> x +x  [D'Eramo & Thaler, 2010]

e dark matter produced out of equilibrium, because, e.g.:
- there is a particle-antiparticle asymmetry n, (analogous or
connected to nz), asymmetric DM [e.g., Petraki & Volkas, 2013]
- feebly interacting with the heat bath / never in equilibrium:

* super-WIMP freeze-in: ¢+ ¢ — x + ¢ [Pagel & Primack, 1992]

* exponential production: ¢+ x — x + X [Bringmann et al. 2021]
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Direct detection away from “vanilla” WIMPs

Below the GeV mass scale alternative technigues and strategies
(e.q. electron recoils or small band gaps for electrons excitations):

» Experimental Panorama

1 meV 1eV 1 keV 1 MeV 1 GeV 100 GeV
| | | | |
| | | | | - mass
< > < <
Absorption Super- Semiconductors  Traditional WIMP
conductors
_ SuperCDMS XENON1T
Dirac
polar Materials  pamic, SENSE LZ
< Crystals Superfluid
Helium Graphene
QCD axion, “ultralight frontier”
~meV energy  ~eV energy ~keV energy
resolution resolution resolution
Collective Electron ,
[Zurek, UCLA Dark Matter 2023] L L Nuclear recoil
excitation excitation
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Filling in the range of possibilities in the EU

At some early cosmological epoch (temperature much larger than
the particle mass) the abundance of the DM candidates relative to
SM particles also spans huge ranges, e.g.:

- It is order 1 for WIMPs (since the sizeable interaction ensures
thermal equilibrium)

- It is very small for super-WIMPs (never in thermal equilibrium
because of their tiny interactions, e.g. they leak out the thermal bath
through the freeze-in mechanism)

- It is very large for super-cold DM (very light bosons, almost non
interacting, with huge occupation numbers of their lowest
momentum state, e.g.: axion DM)

Natural matching Q, ~ Qcpm ? Several of the scenarios mentioned
above simply do envisage fine-tuning.

Reintroducing a (another) particle physics motivated framework?
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The axion solution to the strong CP problem
In the Lagrangian of QCD is not forbidden to have:

2 ~
Lqcp D 9338 -GG (gluon field strength contracted to its dual)
70

which violates T, P & CP and give rise to dangerous operators such as an
electric dipole moment for the neutron:

0 m
d, ~ e— ~ 107% e - cm
(47m)2 my

Experimentally |d,| S 107%ecm = 0 5

10-10 The strong CP problem: why
IS this parameter so small?

The axion solution: promote it to a dynamical field and “relax” it to O:
2 ~
Lo (9+ a<x)> Siele.

fo ) 32m?
initially with flat potential but at 7' ~ Agep acquiring via instantons:
a 1 a’ 1
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The QCD axion as a dark matter candidate

Misalignment production: very light scalars trapped in modes with coherent
oscillations, which behave cosmologically as CDM:

. av
Follow the eq. of motion: a+3Ha+d—~a+3Ha+m a=20
a

when 3H < m,, coherent oscillations with frequency m, start, i.e.

a 1+ 2)=3
.e. as matter. Q, ~ Qcpy = mg ~ 1079 —107% eV (also term from string decay)

| , My My
Pa = 5 (CL2 + m?La’Q) evolves as: pq =~ (_ — 3H) Pa = Pa X (

Frequency [MHZz]
10° 10

The phenomenology mostly based on 10~

the axion coupling with photons: - R
Al
ga ~11 <
»Ca'y'y — 47 F F,ul/ a — gcw E-Ba |> 10 Pulsars ;Q?
within a specific model: %10 ; &
Q E <1077
Jor = 307 <_ 1. 92(4)) &
E m e
— (0.203(3)= — 0.39(1 a_
( ( )N ( )> GeV?

10-°




Generalising to axion-like particles (ALPs)

Misalignment production as a generic scheme for light scalar CDM. Remove
the link to the strong-CP problem and find much lighter or more strongly
coupled cases. Models arising, e.g., in stringy frameworks; possible links with
inflation, dark energy, ...

A more generic parameter space and a variety of detection techniques: from
haloscopes to helioscopes, to cooling of stellar systems, to moditying the y-ray
horizon, ... 10-6
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[Snowmass 2021, arXiv:2203.14923]



Opportunity windows or the lamppost cartoon...

Waiting for super-precision
cosmology to solve it all (but on
small scales and the difficulties
THS 15 WHERE YOU iIn modelling baryons, it is not

- expected to happen very soon),
the dark matter phenomenologist
faces hard times, running the risk
of getting trapped by the
infamous “streetlight effect”.

BUT THIS IS WHERE THE LIGHT IS.

3
L

S\

\ T
NO, T LOST IT IN THE PARK. '

M
’
e
g'
‘_.- 4 .

You can call it lamppost searches, still the scientific program is very
stimulating; few details on few extra sample cases:
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Dark matter boosted by galactic cosmic rays

Reconsider the “light mass wall” in nuclear recoil direct detection

experiments, namely the maximum recoil energy does not fulfil:

m? v?

Mpn
for non-relativistic galactic DM halo particles (v ~ 10~ °¢), if the DM
particle mass m, is lighter than ~ 1 GeV.

max
ER g

> By

However the same coupling ) [Bringmann & Pospelov, PRL 2019]:
DM-ordinary matter being o —— | | "
tested in the experiment, may — )
be relevant in the up-scattering 10 issone iswors——— —
by galactic cosmic rays (mainly & 1° """"""" \f E
protons) of a fraction of the DM ¢ .

galactic population to high o e LR T
energies, making sub-GeV dark 1o .

matter candidates potentially 0 ™ e ez e a0 10
detectable. m, [GeV]
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Blazer boosted dark matter

Is there in Nature a potentially more powertul and/or more efficient

f?
dark matter booster" [Wang, Granelli, PU., PRL 2022]

Blazers are the ideal case: O G " Gas doud sooiing | XGO
10-27 E MiniBooONE CRDM — 7
Extremely powerful flux of 08 e (oot 27 i
protons (electrons) through I W -
an extremely dense dark ns 100 3
matter environment (dark 10 o o "
. 03¢ O
matter spike accreted 10 | \:
around the blazer black hole "
engine), potentially ol omB
. . 10-% ; MiniBooNE CRDM
generating a sizable DM flux oS .
tOwardS US C\E 107 %MiniBooNE (this wor i
S 1077 ENON1T.2ADM Q
. . . . _ o 107%" E ~ - g
Tightest limits/best discovery %5 0= fevonir s 1o
potential for light dark matter oW 21 F
10 © =
See also: T T I
10°° 107* 1078 1072 107" 10° 10°
[Granelli, PU., Wang, JCAP 2022]
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Multi-wavelength signals from dwarf galaxies?

On top of prompt y-ray emission, in dwarf galaxies there can be
radiative emission connected to leptonic components from DM
annihilations/decays:

Early analysis predicting such signal

for Draco:
[Colafrancesco, Profumo & P U., 2006]
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If you trust these predictions (as
done in some later analyses), you
would conclude that from radio
surveys which did not detect such a
signal can put constraints in the
(WIMP) parameter space at a level
competing with y-ray telescopes.

These predictions are however model
dependent, with especially a serious

caveat: what is the level of turbulence
(required to confine e™ /e™) in dwarfs?

Comparable to the one in the Milky
Way cosmic ray halo? (as assumed
in the plot)



Self-confinement of DM-induced cosmic rays

DM would naturally induced a charged particle density gradient, in turn
sourcing turbulence: solve in a dwart the two coupled egs.:

N One 1 0[], 0One 204 0 [p 0 | .
) S "o |" P _T”A”€]+ . aElgﬁC"‘f] OF [E"€]+QCR

P%M(r) ng

with: gcr(r, E) = (ov)

f 2
2mpy db
.\ OW 0 oW 1 0
) — = — | Dp(W)=—| — = —(r20aAW) 4+ Tcr (ne, k)W
) ot 8k[ ok )8k] 7“287“( AW) + Ler(ne, k)
_ AT cvy of
With: Dy, (W) = croak™?vW and Teg = Rl
we(W) = crva R = W) B2 | PP | 5y _—
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geometry and at T I A B ; Bo=104G -
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[Regis, PU. et al, 2023]



Self-confinement of DM-induced cosmic rays

DM would naturally induced a charged particle density gradient, in turn
sourcing turbulence: solve in a dwart the two coupled egs.:
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A minimal DM scheme and (g-2),,

Account for the muon (g-2) anomaly within the most minimal BSM
recipe embedding also a DM candidate: a thermal relic pure Bino +
2 scale muon partners (this is NOT the MSSM).

It works up to the TeV scale and beyond:

[Acunia, Stengel, PU., PRD 2022]
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A minimal DM scheme and (g-2),,

Account for the muon (g-2) anomaly within the most minimal BSM
recipe embedding also a DM candidate: a thermal relic pure Bino +
2 scale muon partners (this is NOT the MSSM).

107

No “traditional” WIMP detection
method working in this case;
kinetic heating of neutron stars
would be instead extremely
efficient and future infrared
surveys of old neutron star . | LN
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[Acuna, Stengel, PU., arXiv:2209.12552] mg (GeV)
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Conclusions

s cosmology shaping a dark sector which will guide us to the
solution of the dark matter problem?

New prejudice-free paths to address the dark matter problem from a
particle physics perspective; are there efficient ways of walking
through them and discriminating among each other?

Several windows of opportunities for dark matter detection still
open; will we enter the stage in which models are confirmed or
rejected?
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