Unified model for particles and condensate Dark Matter

The Role of self-interaction

Alex Soto

15th International Workshop on the identification of Dark Matter 2024

Phys.Rev.D 108 (2023) 8, 083513 (ArXiv:2303.02049 [astro-ph.CO]) *Phys.Rev.D* 110 (2024) 2, 023504 (ArXiv:2311.05280 [astro-ph.CO]) ArXiv:2407.xxxxx (To Appear soon)

Motivation for Ultra-Light DM

Motivation for Ultra-Light DM

Bosons

QCD Axion R. D. Peccei and H. R. Quinn. (1977)

- \circ Scalar field (10⁻⁵ to 10⁻³ eV/c², spin-0)
- It solves the CP problem
- Axion like particles A. Arvanitaki et al., arXiv:0905.4720 [hep-th]
 - Motivated by String models (Axiverse)
 - Wide range of masses

> Higher spin particles

Motivation: Fuzzy Dark Matter

✓ The typical model is a spin zero non-relativistic ultralight bosonic particle (around 10⁻²² eV/c²) which solves small scale problems of CDM

$$\begin{split} &i\hbar\frac{\partial\Phi}{\partial t}\!=\!-\frac{\hbar^2}{2m}\nabla^2\Phi+mV\Phi\\ &\nabla^2V\!=\!4\pi G\,m\,|\Phi|^2 \end{split}$$

Bose-Einstein Condensate

Images from: Mocz *et al.,* Phys. Rev. D **97**, 083519 (2018), arXiv:1801.03507 **[astro-ph.CO]**

$$m = 10^{-21} \text{ eV}$$

Motivation: Condensate and Non-Condensate

Similarities between Fuzzy Dark Matter and Ultracold Atom gases

Image from: N. Proukakis, G. Rigopoulos and A.S., *Phys. Rev. D* 108 (8 2023), p. 083513 2303.02049 [astro-ph.CO]

We can go to the non-relativistic limit in this action

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2\kappa^2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{3} \phi^4 \right)$$

After splitting in higher and low modes

And using Schwinger-Keldysh formalism, Wigner transforms and more...

...We get our equations:

$$\begin{split} i\frac{\partial\Phi_{0}(x)}{\partial t} &= \left(-\frac{1}{2m}\nabla^{2} + V_{c}(x)\right)\Phi_{0}(x) - iR\Phi_{0}(x) + \xi_{1}(x) - 2g\int d^{4}x'\Pi^{R}(x',x)V_{\rm nc}(x')\Phi_{0}(x) + g\xi_{2}(x)\Phi_{0}(x) \\ \frac{\partial f}{\partial t} &+ \frac{\mathbf{k}}{m}\cdot\nabla f - \nabla V_{\rm nc}\cdot\nabla_{\mathbf{k}}f = \frac{1}{2}(I_{a} + I_{b}) \\ \nabla^{2}V^{\rm cl}(x) &= 4\pi G m \left(n_{c}(x) + \tilde{n}(x) + \frac{1}{2}\xi_{2}(x)\right) - 4\pi G m \int d^{4}x' \Pi^{R}(x',x)V_{\rm nc}(x') \\ V_{c}(x) &= m V^{\rm cl}(x) + g(n_{c}(x) + 2\tilde{n}(x)) \\ V_{\rm nc}(x) &= m V^{\rm cl}(x) + 2g(n_{c}(x) + \tilde{n}(x)) \\ N_{\rm nc}(x) &= m V^{\rm cl}(x) + 2g(n_{c}(x) + \tilde{n}(x)) \\ \end{split}$$

Mean field potentials

Condensate and particle number densities

$$\begin{split} i\frac{\partial\Phi_{0}(x)}{\partial t} &= \left(-\frac{1}{2m}\nabla^{2} + V_{c}(x)\right)\Phi_{0}(x) - iR\Phi_{0}(x) + \xi_{1}(x) - 2g\int d^{4}x'\Pi^{R}(x',x)V_{\mathrm{nc}}(x')\Phi_{0}(x) + g\xi_{2}(x)\Phi_{0}(x) \\ \frac{\partial f}{\partial t} &+ \frac{\mathbf{k}}{m}\cdot\nabla f - \nabla V_{\mathrm{nc}}\cdot\nabla_{\mathbf{k}}f = \frac{1}{2}\left(I_{a} + I_{b}\right) & \quad \text{Collisional terms} \\ \nabla^{2}V^{\mathrm{cl}}(x) &= 4\pi G m \left(n_{c}(x) + \tilde{n}(x) + \frac{1}{2}\xi_{2}(x)\right) - 4\pi G m \int d^{4}x' \Pi^{R}(x',x)V_{\mathrm{nc}}(x') \end{split}$$

$$\begin{split} I_{b} &= 4 \, g^{2} \int \frac{d^{3} p_{2} d^{3} p_{3} d^{3} p_{4}}{(2\pi)^{5} \hbar^{7}} \delta(\varepsilon_{\boldsymbol{p}_{3}} + \varepsilon_{\boldsymbol{p}_{4}} - \varepsilon_{\boldsymbol{p}_{2}} - \varepsilon_{\boldsymbol{p}}) \delta(\boldsymbol{p} + \boldsymbol{p}_{2} - \boldsymbol{p}_{3} - \boldsymbol{p}_{4}) \\ &\times [f_{3} f_{4} (f+1) (f_{2}+1) - f f_{2} (f_{3}+1) (f_{4}+1)] \end{split}$$

Particle-Particle collisions

$$I_{a} = 4g^{2}n_{c}\int \frac{d^{3}p_{1} d^{3}p_{2} d^{3}p_{3}}{(2\pi)^{2}\hbar^{4}} \delta(\varepsilon_{q} + \varepsilon_{p_{1}} - \varepsilon_{p_{2}} - \varepsilon_{p_{3}})\delta(p_{2} - p_{1} - q + p_{3})$$

× $(\delta(p_{1} - p) - \delta(p_{2} - p) - \delta(p_{3} - p))[(1 + f_{1})f_{2}f_{3} - f_{1}(1 + f_{2})(1 + f_{3})]$

Particle-Condensate collisions

Collisional terms $i\frac{\partial\Phi_{0}(x)}{\partial t} = \left(-\frac{1}{2m}\nabla^{2} + V_{c}(x)\right)\Phi_{0}(x) - \left(iR\Phi_{0}(x) + \xi_{1}(x) - 2g\int d^{4}x'\Pi^{R}(x',x)V_{nc}(x')\Phi_{0}(x) + g\xi_{2}(x)\Phi_{0}(x)\right)$ $\frac{\partial f}{\partial t} + \frac{\mathbf{k}}{m} \cdot \nabla f - \nabla V_{\rm nc} \cdot \nabla_{\mathbf{k}} f = \frac{1}{2} (I_a + I_b)$ $\nabla^2 V^{\rm cl}(x) = 4\pi G m \left(n_c(x) + \tilde{n}(x) + \frac{1}{2} \xi_2(x) \right) - 4\pi G m \int d^4 x' \, \Pi^R(x', x) V_{\rm nc}(x')$

 $R = \frac{1}{4n_a} \int \frac{d^3 p}{(2\pi)^3} I_a \longrightarrow \text{Particle-Condensate}$

The condensate can grow or decrease

$$\begin{split} i\frac{\partial\Phi_0(x)}{\partial t} &= \left(-\frac{1}{2m}\nabla^2 + V_c(x)\right)\Phi_0(x) - iR\Phi_0(x) + \xi_1(x) - 2g\int d^4x'\Pi^R(x',x)V_{\rm nc}(x')\Phi_0(x) + g\xi_2(x)\Phi_0(x) \\ \frac{\partial f}{\partial t} &+ \frac{\mathbf{k}}{m}\cdot\nabla f - \nabla V_{\rm nc}\cdot\nabla_{\mathbf{k}}f = \frac{1}{2}(I_a + I_b) \\ \nabla^2 V^{\rm cl}(x) &= 4\pi G m \Big(n_c(x) + \tilde{n}(x) + \frac{1}{2}\xi_2(x)\Big) - 4\pi G m \int d^4x' \Pi^R(x',x)V_{\rm nc}(x') \end{split}$$

$$\langle \xi_1^*(x')\xi_1(x)\rangle = \frac{i}{2}\Sigma_{(c)}^K(x)\delta(x-x')$$
 \longrightarrow Noise correlation

Noise can induce condensate production

The Generalised Model: Limits

 $i\frac{\partial\Phi_{0}(x)}{\partial t} = \left(-\frac{1}{2m}\nabla^{2} + V_{c}(x)\right)\Phi_{0}(x) - iR\Phi_{0}(x) + \xi_{1}(x) - 2g\int d^{4}x'\Pi^{R}(x',x)V_{\mathrm{nc}}(x')\Phi_{0}(x) + g\xi_{2}(x)\Phi_{0}(x) + g\xi_{2}(x)\Phi_{0$ $\frac{\partial f}{\partial t} + \frac{\mathbf{k}}{m} \cdot \nabla f - \nabla V_{\rm nc} \cdot \nabla_{\mathbf{k}} f = \frac{1}{2} (I_a + I_b)$ $\nabla^2 V^{\rm cl}(x) = 4\pi G m \left(n_c(x) + \tilde{n}(x) + \frac{1}{2} \xi_2(x) \right) - 4\pi G m \int d^4 x' \, \Pi^R(x', x) V_{\rm nc}(x')$

For g = 0, order m and all condensed \rightarrow We recover FDM

For g = 0, order m and all non-condensed \rightarrow We recover Vlasov-Poisson equations for CDM

No gravity \rightarrow We recover Cold Atom Physics models: ZNG and Stochastic Projected Gross-Pitaevskii

Hydrodynamic equations

We work up to order g with universe expansion: $abla^2 V = 4\pi G a^2 (
ho_c + ilde
ho)$

$$\frac{\partial \rho_c}{\partial t} + 3H\rho_c + \frac{1}{a}\nabla \cdot (\rho_c \boldsymbol{v}) = 0$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \frac{1}{a} \boldsymbol{v} \cdot \nabla \boldsymbol{u} = -\nabla \left(-\frac{\hbar^2}{2m^2 a^3} \frac{\nabla^2 \sqrt{\rho_c}}{\sqrt{\rho_c}} + \frac{1}{a} V + \frac{g}{m^2 a} (\rho_c + 2\tilde{\rho}) \right)$$

Non-condensed particles \longrightarrow Moments and truncation

$$\begin{split} &\frac{\partial \tilde{\rho}}{\partial t} + 3H\tilde{\rho} + \frac{1}{a}\nabla \cdot \left(\tilde{\rho}\tilde{\boldsymbol{v}}\right) = 0\\ &\frac{\partial \tilde{\boldsymbol{u}}}{\partial t} + \frac{1}{a}\tilde{\boldsymbol{v}}\cdot\nabla \tilde{\boldsymbol{u}} = -\nabla\left(\frac{1}{a}V + \frac{2g}{m^2a}(\rho_c + \tilde{\rho})\right) - \frac{1}{a\tilde{\rho}}\nabla P\\ &\frac{\partial P}{\partial t} + 5HP + \frac{1}{a}\nabla \cdot \left(\tilde{\boldsymbol{v}}P\right) = -\frac{2}{3a}P\nabla \cdot \tilde{\boldsymbol{v}} \end{split}$$

Our system admits consistently a particle pressure $P = \kappa \tilde{\rho}^{5/3}$

 $\ddot{\delta}_c + 2H\dot{\delta}_c + \left(\frac{\hbar^2 k^4}{4m^2 a^4} - 4\pi G\bar{\rho}f + \frac{g\bar{\rho}fk^2}{m^2 a^2}\right)\delta_c - (1-f)\left(4\pi G\bar{\rho} - \frac{2g\bar{\rho}k^2}{m^2 a^2}\right)\delta_{\rm nc} = 0$ $\ddot{\delta}_{\rm nc} + 2H\dot{\delta}_{\rm nc} - \left(4\pi G\bar{\rho}(1-f) - \frac{1}{a^2} \left(\frac{2g\bar{\rho}(1-f)}{m^2} + \frac{5\kappa\bar{\rho}^{2/3}(1-f)^{2/3}}{3}\right)k^2\right)\delta_{\rm nc} - f\left(4\pi G\bar{\rho} - \frac{2g\bar{\rho}\,k^2}{m^2a^2}\right)\delta_c = 0$ (m: boson mass) f: condensate fraction g: self-interaction $\kappa: particle pressure (P = \kappa \tilde{\rho}^{5/3})$ **Parameters**

Plot with $\kappa = 0$, for a mass $m = 2 \cdot 10^{-22} \frac{eV}{c^2}$ and redshift z = 3. Mixed case shows an enhancement in the power spectrum

of Dark Matter 2024

Particle pressure

Hybrid model looks like FDM of higher mass.

We must be careful with statements about constraints on the mass.

N. Proukakis, G. Rigopoulos and A.S., ArXiv:2311.05280 [astro-ph.CO]

Alex Soto - 15th International Workshop on the identification of Dark Matter 2024

Summary and Comments

We have a general model for bosonic Dark Matter (condensate + particles). Known models are recovered under the appropriate limits.

Self-Interaction can enrich the dynamics of the system and it could have an importance in the generation of the condensate. We observe in the linear regime interesting features, but a non-linear regime simulation is crucial.

The model with both components with self-interaction can mimic FDM, so we need to be careful with placing constraints.

Thanks!