

15th International Workshop on the Identification of Dark Matter 2024

Jul 8-12 2024 L'Aquila (Italy)

Status of DEAP-3600

Pushparaj Adhikari On Behalf of the DEAP-3600 Collaboration

Canada's Capital University

DEAP collaboration

DEAP site

DEAP detector is located at SNOLAB in Sudbury Ontario

A deep underground laboratory which uses the 2 km of rock overburden (provides a ~6 k.m.w.e overburden)

)

DEAP-3600 detector

Target : 3269±24 kg of LAr in acrylic vessel

Photon detection: 255 HQE PMTs connected via acrylic light guides

Inner surface of vessel coated with TPB wavelength shifter

Shielding: Filler blocks between LGs used for thermal insulation and neutron shielding

Veto: Steel shell is immersed in 300 tons of H2O, viewed by 48 veto PMTs

Electromagnetic background

Shielded by water, SSS, filler blocks, light guide, acrylic vessel.

PEcorr 5000 15000 20000 30000 0 10000 25000 $kg \times yr$) counts / 28.9 keV / dataset 10¹ 10^{6} ⁴²Ar/⁴²K LAr bulk ³⁹Ar I Ar bulk Data MC Sum 10¹⁰ 222 Bn LAr bulk 220 Bn LAr bulk ---- ²¹⁰Pb LAr surf ²²⁶Ra AV bulk 10⁵ 100 mm AV bulk: ²³²Th LG bulk - ²³²Th FB bulk 10⁹ 232 Th AV bulk ⁴⁰K PMT all counts / (keV × 10⁴ 226Ra, 232Th ---- 226 Ra SSS bulk 226 Ba PMT all ²³²Th PMT all ⁶⁰Co SSS bulk 10⁸ 10³ 232Th SSS bulk ----- neutron PMT glass 107 10² LAr surf: 10⁶ 0Ph 10 10⁵ RnEm: 2614 ke 222Rn, 222Rn 2614 keV 10⁴ 10^{-1} 200 mm 850 mm 10³ 10^{-2} AV radius FB bulk: 1460 ke 10² 150 m 10^{-3} 232Th 10 10^{-4} PMT all: LAr bulk: 39Ar, 226Ra, 232Th 10-5 1460 Key 150 mm 42Ar. 42K. (data - MC) / data [%] 222Rn, 220Rn 60 LG bulk: 40 232Th 20 SSS bulk: 0 226Ra, 232Th, 60Co -20 -40 (\mathbf{n}, \mathbf{y}) on neutron PMT glass: -60 238U (232Th, 235U) Fe. 53Cr 4500 500 1000 1500 2000 2500 3000 3500 4000 E [keV] 68.2% 95.4% 99.7% (systematics on energy scale and resolution not included)

Phys. Rev. D 100, 072009 (2019)

6

Surface background

Mostly Po-210 decays on the surface of AV

Constrained by the fiducial cut

Physical Review D, 100, 022004 (2019)

Physical Review D, 100, 022004 (2019)

Neck background

Alpha decay by the Po-210 from the surface of the acrylic flow guide located at neck of the detector

Significant backgrounds on low energy produces due to the shadowed/degraded alpha decays

Dust background

Attenuation before entering liquid argon, and scintillation light shadowed

Different dust sizes are simulated and modelled with the data

Ex-situ measurements of metallic dust in liquid nitrogen support this hypothesis

WIMP search

First year dataset (DS) : November 2016 -October 2017 (231 live days)

No WIMP-like signals: 0 events in ROI

	Background rejection cut	WIMP accept. [%]	$N_{ m bkg}^{ m ROI}$	$N_{\rm obs}^{\rm ROI}$
Cherenkov	Neck veto	$92.0^{+1.0}_{-0.1}$	$9.2^{+4.4}_{-3.5}$	29
s in neck	Early pulses in GAr PMTs	$45.4^{+1.5}_{-0.1}$	$2.3^{+1.1}_{-0.9}$	2
α-decay	Position fitter consistency	$35.4^{+2.5}_{-0.1}$	$0.62^{+0.31}_{-0.28}$	0
	Total	$35.4^{+2.5}_{-0.1}$	$0.62^{+0.31}_{-0.28}$	0

Sensitivity

Exclude S.I WIMP-nucleon cross sections above 3.9x10⁻⁴⁵ cm² for 100 GeV/c² WIMP mass (90% C.L.)

Constraints on dark matter-nucleon effective coupling

Results are interpreted with a Non-Relativistic Effective Field Theory framework.

Examines how various substructures in the local dark matter halo may affect these constraints.

Upper limits (90 % C.L.) on the effective operator Q1 for substructures.

Constraints on the Q1 interaction, for IV (isovector; solid) and XP (xenonphobic; dashed) scenarios.

Phys. Rev. D 102, 082001 (2020)

Planck-scale mass dark matter

A search for multi-scatter signals from supermassive dark matter was performed.

Multiple recoils - very high-energy, low F_{prompt} event

Blind analysis of data collected over a 813 days live time no event was found in the region of interest.

Phys. Rev. Lett. 128, 011801 (2022)

Probability of DM with m = 10^{18} GeV/c² populating each ROI and surviving all cuts at varying $\sigma_{T\gamma}$

Specific activity of ³⁹Ar

Eur. Phys. J. C 83, 642 (2023)

Most precise measurement of the specific activity of ³⁹Ar in atmospheric argon to date and agrees with existing measurements.

DEAP-3600 (this work)

An example fit on one run including the ³⁹Ar, electron recoil backgrounds (ERB), and ³⁹Ar pile-up components.

1	/
+	-

 $0.964 \pm 0.001_{stat} \pm 0.024_{sys}$

Alpha quenching factor in liquid argon

Performed a relative measurement of the QF at energies between 5.489 and 7.686 MeV - full-energy α peak

Extrapolated the QF values into the low-energy region down to 10 keV

The energy-dependent QF: product of the best-fit electronic QF curve and the nuclear QF curve from TRIM

Coming up

3 Year Dataset (Nov 2016 to March 2020) expect ~800 days of lifetime instead of 231 days

MVA algorithms (RF, BDT, NN) for background rejection (neck alpha, dust alpha for example)

Detector Upgrade

- The hardware upgrades will allow us to reach DEAP-3600 design sensitivity
- To verify the DEAP background model
- To have a "zero background" data set
- Upgrades are designed to remove the neck and dust backgrounds.
- Replace faulty VETO PMTs
- Many maintenance/process improvements

Detector Upgrade

Neck flow guide replacement

Warming the neck region to remove possibility of liquid film or droplets forming

Coat the flow guide surfaces with a "slow" WLS - Pyrene is selected

Pyrene has a long decay time : neck events will have lower fprompt

Dust removal

Deployment of stainless steel pipe through the neck of the detector

- syphon liquid argon into external storage dewar

Removal of dust using high purity filter installed in existing gas purification system

Refill AV with clean LAr

Summary

- World-class PSD performance in Liquid Argon.
- Exclude S.I WIMP-nucleon cross sections above 3.9x10⁻⁴⁵ cm² for 100 GeV/c² WIMP mass (90% C.L.).
- Results reinterpreted using a non-relativistic EFT framework.
- World-leading sensitivity to Planck-scale mass dark matter
- Measurement and extrapolation of scintillation quenching factor of α-Particles in Liquid Argon
- Coming up: 3 years Dataset, MVA algorithms, improved background model.
- Hardware upgrades are in progress and are expected to significantly reduce degraded alpha backgrounds.

Thank you for your attention

Backup

The detector

Neutron background

Cosmogenic Neutrons:

Produced by high energy atmospheric muon: are tagged when passing through muon veto

Radiogenic neutrons:

Produced in the (α,n) reaction triggered by α -decays from Uranium/Thorium chains or by the spontaneous fission of 238-U.

Mitigation process: estimation of flux with material assays

Neutron capture analysis: tagging NR event closely followed (1ms) by high energy ER event

Liquid Argon

Good scintillation light yield (40,000 photons/MeV)

Transparent to scintillation light (128 nm)

Singlet State (6 ns) \rightarrow Nuclear Recoils (NR) i.e. (WIMP, α , n)

Triplet State (1.4 μ s) \rightarrow Electron Recoils (ER) i.e. (β , μ , γ)

