BOOSTED LIGHT DARK MATTER FROM PRIMORDIAL BLACK HOLES @ DARKSIDE-50

Roberta Calabrese (rcalabrese@na.infn.it)

On behalf of the DarkSide collaboration

A follow up of Phys. Rev. D 105 (2022) 10, 103024 and Phys. Rev. D 105 (2022) 2, L021302

PRIMORDIAL BLACK HOLES

S. W. Hawking, Commun.Math.Phys. 1975 B. J. Carr, Astrophys.J. 1975 J. Auffinger, arXiv: 2206.02672

WHY PRIMORDIAL BLACK HOLES

See also D. Gaggero, A. Cuoco, P. Pani, R. Key, and S. Zhang talks!

WHY PRIMORDIAL BLACK HOLES

Primordial Black Holes represent an intrinsic link between three pillars of modern physics!

HAWKING RADIATION

Uncertainty principle \rightarrow the vacuum is a medium in which particle and antiparticle pairs appear and disappear

 $E_p(\infty) + E_{\overline{p}}(\infty) = 0$

S. W. Hawking, CMP 87 (1983) 577 G.W. Gibbons and S. W. Hawking, PRD 15 (1977) H. J. Trashen, arXiv gr-qc/0010055

HAWKING RADIATION

Uncertainty principle \rightarrow the vacuum is a medium in which particle and antiparticle

pairs appear and disappear

 $E_p(\infty) + E_{\overline{p}}(\infty) = 0$

What happens near the event horizon?

S. W. Hawking, CMP 87 (1983) 577 G.W. Gibbons and S. W. Hawking, PRD 15 (1977) H. J. Trashen, arXiv gr-qc/0010055

PARTICLE EMISSION

The emission is black-body-like, with a

temperature given by

 $T_{BH} = \frac{\kappa}{2\pi}$

For a **neutral** and **non-rotating**

Primordial

Black Hole, the Hawking temperature is

$$T_{PBH} = \frac{\hbar c^3}{8\pi G k_B M_{PBH}}$$

S. W. Hawking, CMP 87 (1983) 577 G.W. Gibbons and S. W. Hawking, PRD 15 (1977) H. J. Trashen, arXiv gr-qc/0010055

PARTICLE EMISSION

LIGHT DARK MATTER FLUX

Light Dark Matter usually produces recoil energies below the energy threshold. Scenarios considering Dark Matter endowed with high kinetic energies overcome this experimental limitation!

LIGHT DARK MATTER FLUX

Light Dark Matter usually produces recoil energies below the energy threshold. Scenarios considering Dark Matter endowed with high kinetic energies overcome this experimental limitation!

ROBERTA CALAB<u>rese</u>

DARKSIDE-50 LOW MASS SEARCHES

★Event signatures:

- Scintillation light (S1 signal)
- Ionization: electrons drifted upwards
 and multiplied in the gas phase
 electroluminescence light (S2 signal)

DARKSIDE-50 LOW MASS SEARCHES

* Studying both the S1 and the S2 signal electronic recoil (ER) vs nuclear recoil (NR) discrimination

- ★ Requiring S1+S2 lower energy threshold is too high (below threshold: the S1 signal is too small to be detected)
- * Requiring only S2 good lower energy threshold of , but we have to deal with the ER background

ANALYSIS

★Assumptions:

o monochromatic mass distribution of non-rotating and neutral Primordial Black Holes

• highest f_{PBH} allowed by existing constraints

★ Aim: constrain the Dark Matter parameter space.

★ Data and Analysis:

• **S2-only data** collected by DS-50 from December 12, 2015 to February 24, 2018 ($\epsilon_{DS} = 635.1 days$)

• We employed the **Bayesian analysis** shown in "<u>Search for low mass dark matter in</u>

DarkSide-50: the bayesian network approach" (Eur. Phys. J. C 83 (2023) 322)

★ Lower limit: based on the Asimov dataset, obtained on the nominal pre-fit best estimation of the θ_{nuis} , $r_{B,src}$, and ε parameters.

★ Upper limit: obtained looking for the cross-section at which the event rate is pushed below the threshold (work in progress)

(1) Cosmic Rays up-

scatterings (T. Bringmann and M. Pospelov, PRL 2019; Christopher Cappiello; John F. Beacom, PRD 2019; X. Cui et al; (PandaX-II), Phys. Rev. Lett. 128, 171801420 (2022));

(2) CRESST experiment (G.

Angloher et al, EPJC 2017; A. H. Abdelhameed et al, PRD 2019);

(3) Cosmology (V. Gluscevic and K. K.

Boddy,PRL 2018; W. L. Xu et al, PRD 2018; T. R. Slatyer and C. L. Wu, PRD 2018; E. O. Nadler et al, AJL 2019).

CONCLUSIONS

★ Primordial Black Holes as source of Boosted light Dark

Matter

- ★ We consider the effects of the Earth shielding on the Dark Matter flux
- ★ Considering DarkSide-50 data, we limit σ_{χ}^{SI} assuming Primordial Black Holes existence
- ★ We plan on obtaining forecast constraints for DarkSide-20k

ANALYSIS

We assume a **binned Poisson likelihood** defined as

$$p(\{x_i\}|\boldsymbol{\theta}) = \prod_i \frac{\lambda_i(\boldsymbol{\theta})^{x_i}}{x_i!} e^{-\lambda_i(\boldsymbol{\theta})},$$

where x_i is the **number of events** in the i-th bin, θ indicates all the **parameters of the fit** related to the signal model and the detector response and the background model. In particular

$$\lambda_{i} = \frac{\mathcal{E}}{\mathcal{E}_{DS}} \Big[r_{B,Ar} S_{i}^{Ar}(\boldsymbol{\theta}_{nuis}) + r_{B,Kr} S_{i}^{Kr}(\boldsymbol{\theta}_{nuis}) + r_{B,PMT} S_{i}^{PMT}(\boldsymbol{\theta}_{nuis}) + r_{B,cryo} S_{i}^{cryo}(\boldsymbol{\theta}_{nuis}) + f_{PBH} S_{i}^{PBH}(\sigma_{\chi}^{SI}, \boldsymbol{\theta}_{nuis}) \Big]$$

• S_i^{src} = are the expected background and signal

 $\circ r_{B,src}$ = are proportional to the rate of internal and external background components

 $\circ \mathcal{E}(\mathcal{E}_{DS}) = \text{total (nominal) exposure}$

WHAT DID WE DO IN THE PREVIOUS WORK?

We obtained constraints on the σ_{χ}^{SI} from the non observation of excess in XENON1T for $E_r \in [4.9 - 40.9]$ keV

- Cosmic Rays up-scatterings (T. Bringmann and M. Pospelov, PRL 2019; Christopher Cappiello and John F. Beacom, PRD 2019);
- (2) CRESST experiment (G. Angloher et al, EPJC 2017; A. H. Abdelhameed et al, PRD 2019);
- (3) Cosmology (V. Gluscevic and K. K. Boddy, PRL 2018; W. L. Xu et al, PRD 2018; T. R. Slatyer and C. L. Wu, PRD 2018; E. O. Nadler et al, AJL 2019).

20

B. Carr et al, Rept.Prog.Phys. 84 (2021) 11, 116902