OPTIMAL ANTI-FERROMAGNETS FOR LIGHT DARK MATTER DETECTION

Angelo Esposito

Istituto Nazionale di Fisica Nucleare

IDM, L'Aquila, July 2024

• Most of the matter that interacts gravitationally is dark

• Most of the matter that interacts gravitationally is dark

• One of the strongest evidences for physics beyond the Standard Model

• Most of the matter that interacts gravitationally is dark

- One of the strongest evidences for physics beyond the Standard Model
- However... huge possible mass range
 →
 detection techniques
 vary widely depending on the dark matter mass

SAPIENZA

 $10^{6} \,\mathrm{eV}$ $10^{9} \,\mathrm{eV}$

 $10^{11} \, \mathrm{eV}$

Angelo Esposito

 $10^{-22} \, \text{eV}$

 $10^{-4} \, \text{eV}$

 $10^{40} \, \mathrm{eV}$

• Dark matter is a particle but too light for elastic recoil

- Dark matter is a particle but too light for elastic recoil
- Need new materials and/or observables

SAPIENZA UNIVERSITÀ DI ROMA

• For an elastic scattering, it must be

$$E_T = \frac{m_{\chi}/m_T}{(1 + m_{\chi}/m_T)^2} E_{\chi} \gtrsim E_{threshold}$$

• For an elastic scattering, it must be

$$E_T = \frac{m_{\chi}/m_T}{(1 + m_{\chi}/m_T)^2} E_{\chi} \gtrsim E_{threshold}$$

• For $m_{\chi} \lesssim 1$ MeV elastic scattering off nuclei or electrons is very inefficient

[CRESST - PRD 2019, 1904.00498]

Sapienza

• For an elastic scattering, it must be

$$E_T = \frac{m_{\chi}/m_T}{(1 + m_{\chi}/m_T)^2} E_{\chi} \gtrsim E_{threshold}$$

• For $m_{\chi} \lesssim 1$ MeV elastic scattering off nuclei or electrons is very inefficient

[CRESST - PRD 2019, 1904.00498]

 To evade this we must look into inelastic processes, which relax the kinematics constraints

Angelo Esposito

Condensed matter	Atomic physics	Nuclear physics	
$q \ll 1/a_B$	$q \sim 1/a_B$	$q \lesssim \Lambda_{QCD}$	
10) ⁶ 1	$0^8 \qquad m_{\chi}$	(eV)

For light dark matter one needs to delve into the condensed matter world

Condensed matter	Atomic physics	Nuclear physics	
$q \ll 1/a_B$	$q \sim 1/a_B$	$q \lesssim \Lambda_{QCD}$	
10) ⁶ 1	$0^8 m_{\chi}$	[eV]

 Must account for the complicated many-body physics (correlations, strong coupling, ...)

For light dark matter one needs to delve into the condensed matter world

	Condensed matter $a \ll 1/a_{\rm p}$	Atomic physics $a \sim 1/a_{\rm p}$	Ν	Nuclea	r physic Λ_{0CD}	cs	
_	d << 110B	d nor		1~	<u>Q</u> CD		>
	10)6	10 ⁸			m_{χ}	[eV]
Must accou	unt for the compl	licated	•	•	•		
many-body	physics (correlat	tions,			•		
strong cou	pling,)		•	•	•		

For light dark matter one needs to delve into the condensed matter world

Condensed matter	Atomic physics	Nuclear physics	
$q \ll 1/a_B$	$q \sim 1/a_B$	$q \lesssim \Lambda_{QCD}$	
1() ⁶ 1	$0^8 m_{\chi}$	[eV]

 Must account for the complicated many-body physics (correlations, strong coupling, ...)

For light dark matter one needs to delve into the condensed matter world

Condensed matter	Atomic physics	Nuclear physics	
$q \ll 1/a_B$	$q \sim 1/a_B$	$q \lesssim \Lambda_{QCD}$	
1() ⁶ 1	$0^8 m_{\chi}$	[eV]

 Must account for the complicated many-body physics (correlations, strong coupling, ...)

For light dark matter one needs to delve into the condensed matter world

Condensed matter	Atomic physics	Nuclear physics	
$q \ll 1/a_B$	$q \sim 1/a_B$	$q \lesssim \Lambda_{QCD}$	
1() ⁶ 1	$0^8 m_{\chi}$	[eV]

 Must account for the complicated many-body physics (correlations, strong coupling, ...)

• Need theoretical tools that allow to solve or bypass these problems

Angelo Esposito

• For $m_{\chi} \leq O(\text{MeV})$ dark matter scattering transfers a momentum

 $1/q \sim 1/(m_{\chi}v_{\chi}) \gtrsim \mathcal{O}(1\text{\AA}) \sim \text{inter-atomic distance}$

• For $m_{\chi} \leq O$ (MeV) dark matter scattering transfers a momentum

 $1/q \sim 1/(m_{\chi}v_{\chi}) \gtrsim \mathcal{O}(1\text{\AA}) \sim \text{inter-atomic distance}$

• Dark matter acts coherently over many scattering centers

• For $m_{\chi} \leq O(\text{MeV})$ dark matter scattering transfers a momentum

$$1/q \sim 1/(m_{\chi}v_{\chi}) \gtrsim O(1\text{\AA}) \sim \text{inter-atomic distance}$$

• Dark matter acts coherently over many scattering centers

• For $m_{\chi} \leq O$ (MeV) dark matter scattering transfers a momentum

$$1/q \sim 1/(m_{\chi}v_{\chi}) \gtrsim O(1\text{\AA}) \sim \text{inter-atomic distance}$$

• Dark matter acts coherently over many scattering centers

Typically, no more single particle final states
 signatures

[e.g., Trickle et al. - JHEP 2020, 1910.08092; Griffin et al. - PRD 2020, 1910.10716]

Angelo Esposito

• A growing field, with many interesting ideas at the edge between condensed matter and particle physics

- A growing field, with many interesting ideas at the edge between condensed matter and particle physics
 - I. Solid crystals (GaAs, SiO, ...) -> multi-phonon

[e.g., Knapen et al. - PLB 2018, 1712.06598; Campbell-Deem et al. - PRD 2020, 1911.03482; Griffin et al. - PRD 2021, 2008.08560]

- A growing field, with many interesting ideas at the edge between condensed matter and particle physics
 - I. Solid crystals (GaAs, SiO, ...) -> multi-phonon

[e.g., Knapen et al. - PLB 2018, 1712.06598; Campbell-Deem et al. - PRD 2020, 1911.03482; Griffin et al. - PRD 2021, 2008.08560]

2. Superfluid ⁴He → multi-phonon

[e.g., Guo, McKinsey - PRD 2013, 1302.0534; Schutz, Zurek - PRL 2016, 1604.08206; Caputo, AE, Polosa - PRD 2019, 1907.10635]

SAPIENZA

- A growing field, with many interesting ideas at the edge between condensed matter and particle physics
 - I. Solid crystals (GaAs, SiO, ...) -> multi-phonon

[e.g., Knapen et al. - PLB 2018, 1712.06598; Campbell-Deem et al. - PRD 2020, 1911.03482; Griffin et al. - PRD 2021, 2008.08560]

2. Superfluid ⁴He → multi-phonon

[e.g., Guo, McKinsey - PRD 2013, 1302.0534; Schutz, Zurek - PRL 2016, 1604.08206; Caputo, AE, Polosa - PRD 2019, 1907.10635]

Magnetic materials (Y₃Fe₅O₁₂, NiO, ...) → single- and multi-magnon

[e.g., Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Trickle, Zhang, Zurek - PRD 2022, 2009.13534; Mitridate, Trickle, Zhang, Zurek - PRD 2020, 2005.10256; AE, Pavaskar - PRD 2023, 2210.13516]

Lefitete Nacionale di Fisica N

SAPIENZA
COLLECTIVE EXCITATIONS

- A growing field, with many interesting ideas at the edge between condensed matter and particle physics
 - I. Solid crystals (GaAs, SiO, ...) -> multi-phonon

[e.g., Knapen et al. - PLB 2018, 1712.06598; Campbell-Deem et al. - PRD 2020, 1911.03482; Griffin et al. - PRD 2021, 2008.08560]

2. Superfluid ⁴He → multi-phonon

[e.g., Guo, McKinsey - PRD 2013, 1302.0534; Schutz, Zurek - PRL 2016, 1604.08206; Caputo, AE, Polosa - PRD 2019, 1907.10635]

Magnetic materials (Y₃Fe₅O₁₂, NiO, ...) → single- and multi-magnon

[e.g., Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Trickle, Zhang, Zurek - PRD 2022, 2009.13534; Mitridate, Trickle, Zhang, Zurek - PRD 2020, 2005.10256; AE, Pavaskar - PRD 2023, 2210.13516]

[for a review, Kahn, Lin - Rept.Prog.Phys. 2022, 2108.03239]

4. And more...

COLLECTIVE EXCITATIONS

- A growing field, with many interesting ideas at the edge between condensed matter and particle physics
 - I. Solid crystals (GaAs, SiO, ...) -> multi-phonon

[e.g., Knapen et al. - PLB 2018, 1712.06598; Campbell-Deem et al. - PRD 2020, 1911.03482; Griffin et al. - PRD 2021, 2008.08560]

2. Superfluid ⁴He → multi-phonon

[e.g., Guo, McKinsey - PRD 2013, 1302.0534; Schutz, Zurek - PRL 2016, 1604.08206; Caputo, AE, Polosa - PRD 2019, 1907.10635]

3. Magnetic materials ($Y_3Fe_5O_{12}$, NiO, ...) \rightarrow single- and multi-magnon

[e.g., Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Trickle, Zhang, Zurek - PRD 2022, 2009.13534; Mitridate, Trickle, Zhang, Zurek - PRD 2020, 2005.10256; AE, Pavaskar - PRD 2023, 2210.13516]

[for a review, Kahn, Lin - Rept.Prog.Phys. 2022, 2108.03239]

4. And more...

SAPIENZA UNIVERSITÀ DI ROMA

• How can we probe dark matter with spin-dependent interactions?

- How can we probe dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How can we probe dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How can we probe dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How can we probe dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How can we probe dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How can we probe dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

 Ways to detect few magnons have already been proposed (TES, MKID, quantum sensors)

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Lachance-Quirion et al. - Science Advances 2017; Lachance-Quirion et al. - Science 2020]

Angelo Esposito

• How does the dark matter interact with spins?

SAPIENZA UNIVERSITÀ DI ROMA

- How does the dark matter interact with spins?
- At low energies dark matter couples to spin density field

- How does the dark matter interact with spins?
- At low energies dark matter couples to spin density field
- Two benchmark models:

$$\mathcal{L}_{m.d.} \sim V_{\mu\nu} \,\bar{\chi} \sigma^{\mu\nu} \chi + V_{\mu} \,\bar{e} \gamma^{\mu} e$$
$$\mathcal{L}_{p.m.} \sim \phi \,\bar{\chi} \chi + \phi \,\bar{e} i \gamma^5 e$$

[e.g., Sigurdson et al. - PRD 2004, astro-ph/ 0406355; Chang, Weiner, Yavin - PRD 2010, 1007.4200]

[e.g., Banks, Fortin, Thomas - 1007.5515; Bagnasco, Dine, Thomas - PLB 1994, hep-ph/9310290]

- How does the dark matter interact with spins?
- At low energies dark matter couples to spin density field
- Two benchmark models:

$$\mathcal{L}_{m.d.} \sim V_{\mu\nu} \,\bar{\chi} \sigma^{\mu\nu} \chi + V_{\mu} \,\bar{e} \gamma^{\mu} e$$
$$\mathcal{L}_{p.m.} \sim \phi \,\bar{\chi} \chi + \phi \,\bar{e} i \gamma^5 e$$

[e.g., Sigurdson et al. - PRD 2004, astro-ph/ 0406355; Chang, Weiner, Yavin - PRD 2010, 1007.4200]

[e.g., Banks, Fortin, Thomas - 1007.5515; Bagnasco, Dine, Thomas - PLB 1994, hep-ph/9310290]

• At low energies:

$$\begin{aligned} \mathscr{L}_{m.d.} &\to \chi^{\dagger} \sigma^{i} \chi \left(\delta^{ij} - \nabla^{-2} \nabla^{i} \nabla^{j} \right) \, s_{i} \\ \mathscr{L}_{p.m.} &\to \chi^{\dagger} \chi \, \nabla^{-2} \, \nabla \cdot \mathbf{s} \end{aligned}$$

- How does the dark matter interact with spins?
- At low energies dark matter couples to spin density field
- Two benchmark models:

$$\mathcal{L}_{m.d.} \sim V_{\mu\nu} \,\bar{\chi} \sigma^{\mu\nu} \chi + V_{\mu} \,\bar{e} \gamma^{\mu} e$$
$$\mathcal{L}_{p.m.} \sim \phi \,\bar{\chi} \chi + \phi \,\bar{e} i \gamma^5 e$$

[e.g., Sigurdson et al. - PRD 2004, astro-ph/ 0406355; Chang, Weiner, Yavin - PRD 2010, 1007.4200]

[e.g., Banks, Fortin, Thomas - 1007.5515; Bagnasco, Dine, Thomas - PLB 1994, hep-ph/9310290]

• At low energies:

$$\begin{aligned} \mathscr{L}_{m.d.} &\to \chi^{\dagger} \sigma^{i} \chi \left(\delta^{ij} - \nabla^{-2} \nabla^{i} \nabla^{j} \right) s_{i} \\ \mathscr{L}_{p.m.} &\to \chi^{\dagger} \chi \nabla^{-2} \nabla \cdot \mathbf{s} \end{aligned} \qquad \text{spin density}$$

Angelo Esposito

• First proposed to use ferromagnets

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Mitridate et al. - PRD 2020, 2005.10256; Chigus, Moroi, Nakayama - PRD 2020, 2001.10666; Trickle, Zhang, Zurek - PRD 2022, 2009.13534]

• First proposed to use ferromagnets

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Mitridate et al. - PRD 2020, 2005.10256; Chigus, Moroi, Nakayama - PRD 2020, 2001.10666; Trickle, Zhang, Zurek - PRD 2022, 2009.13534]

• First proposed to use ferromagnets

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Mitridate et al. - PRD 2020, 2005.10256; Chigus, Moroi, Nakayama - PRD 2020, 2001.10666; Trickle, Zhang, Zurek - PRD 2022, 2009.13534]

• First proposed to use ferromagnets

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Mitridate et al. - PRD 2020, 2005.10256; Chigus, Moroi, Nakayama - PRD 2020, 2001.10666; Trickle, Zhang, Zurek - PRD 2022, 2009.13534]

• First proposed to use ferromagnets

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Mitridate et al. - PRD 2020, 2005.10256; Chigus, Moroi, Nakayama - PRD 2020, 2001.10666; Trickle, Zhang, Zurek - PRD 2022, 2009.13534]

Conservation of magnetization

only one magnon emitted

Intitute Nacionale di Fisica Nacio

• First proposed to use ferromagnets

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Mitridate et al. - PRD 2020, 2005.10256; Chigus, Moroi, Nakayama - PRD 2020, 2001.10666; Trickle, Zhang, Zurek - PRD 2022, 2009.13534]

$$\omega_{max} = E_{\chi} \frac{4 m_{\theta}/m_{\chi}}{(1 + m_{\theta}/m_{\chi})^2} \quad \text{with} \quad m_{\theta} \sim 1 \text{ MeV} \quad \longrightarrow \qquad \begin{array}{c} \text{inefficient for} \\ m_{\chi} \lesssim \mathcal{O}(\text{MeV}) \end{array}$$

Angelo Esposito $\bigotimes \text{ SPENCA} \quad \widehat{} \qquad 10/17 \qquad$

Angelo Esposito

• A better class of materials might be *anti-ferromagnets*

• A better class of materials might be *anti-ferromagnets*

• A better class of materials might be *anti-ferromagnets*

• A better class of materials might be *anti-ferromagnets*

• For single-magnon emission:

$$\omega_{max} = 4 E_{\chi} \left(v_{\theta} / v_{\chi} \right) \left[1 - \left(v_{\theta} / v_{\chi} \right) \right]$$

• A better class of materials might be *anti-ferromagnets*

• For single-magnon emission: $\omega_{max} = 4 E_{\chi} \left(v_{\theta} / v_{\chi} \right) \left| 1 - \left(v_{\theta} / v_{\chi} \right) \right|$

SAPIENZA UNIVERSITÀ DI ROMA

Angelo Esposito

• Nickel-oxide has $v_{\theta} \sim v_{\chi} \rightarrow$ very efficient at absorbing dark matter energy [AE, Pavaskar - PRD (2023), 2210.13516]

||/|7

Angelo Esposito

• Magnons in anti-ferromagnets have two polarizations, analogous to particle and anti-particle in a relativistic theory

- Magnons in anti-ferromagnets have two polarizations, analogous to particle and anti-particle in a relativistic theory

- Magnons in anti-ferromagnets have two polarizations, analogous to particle and anti-particle in a relativistic theory
- In anti-ferromagnets you can always emit magnon and anti-magnon pairs and compensate for the charge

- Magnons in anti-ferromagnets have two polarizations, analogous to particle and anti-particle in a relativistic theory
- In anti-ferromagnets you can always emit magnon and anti-magnon pairs and compensate for the charge
- Multi-magnon emission process evade the kinematical constraints and get down to $m_{\chi} \sim O(\text{keV})$

MAGNONS

Angelo Esposito

MAGNONS

• Anti-ferromagnet spontaneously break internal spin symmetry

Anti-ferromagnet spontaneously break internal spin symmetry

• Anti-ferromagnet spontaneously break internal spin symmetry

• Anti-ferromagnet spontaneously break internal spin symmetry

Gapless magnon = Goldstone

Anti-ferromagnet spontaneously break internal spin symmetry

Gapless magnon = Goldstone

• At low energies/momenta magnons can be described by an EFT, invariant under the full symmetry group

Angelo Esposito

• Very similar to the non-linear σ -model:

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$
magnon fields

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$
magnon fields

• At lowest order in the derivative expansion, the most general invariant Lagrangian is

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$
magnon fields

• At lowest order in the derivative expansion, the most general invariant Lagrangian is

$$\mathscr{L} = c_1 \mathbf{n}^2 - c_2 \left(\nabla_i \mathbf{n} \right)^2$$

Angelo Esposito

Liftete Nacionale di Faica Nacio

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$
magnon fields

• At lowest order in the derivative expansion, the most general invariant Lagrangian is

$$\mathscr{L} = c_1 \mathbf{n}^2 - c_2 \left(\nabla_i \mathbf{n} \right)^2$$

$$= c_1 \left(\dot{\theta}^a \right)^2 - c_2 \left(\nabla_i \theta^a \right)^2 + \dots$$

Angelo Esposito

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$
magnon fields

• At lowest order in the derivative expansion, the most general invariant Lagrangian is

Angelo Esposito

• Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$

- Recall that the dark matter interacts via spin density, s(x)
- Easily computed as SO(3) Noether current in the EFT:

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_i = c_1 \left(\mathbf{n} \times \dot{\mathbf{n}} \right)_i = c_1 \left[\delta_{ia} \dot{\theta}^a + \delta_{i3} \epsilon_{ab} \theta^a \dot{\theta}^b + \dots \right]$$

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_{i} = c_{1} \left(\mathbf{n} \times \dot{\mathbf{n}} \right)_{i} = c_{1} \left[\delta_{ia} \dot{\theta}^{a} + \delta_{i3} \epsilon_{ab} \theta^{a} \dot{\theta}^{b} + \dots \right]$$
one-magnon
emission

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_{i} = c_{1} (\mathbf{n} \times \dot{\mathbf{n}})_{i} = c_{1} \begin{bmatrix} \delta_{ia} \dot{\theta}^{a} + \delta_{i3} \epsilon_{ab} \theta^{a} \dot{\theta}^{b} + \dots \end{bmatrix}$$
one-magnon
emission
two-magnons
emission

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_{i} = c_{1} (\mathbf{n} \times \dot{\mathbf{n}})_{i} = c_{1} \begin{bmatrix} \delta_{ia} \dot{\theta}^{a} + \delta_{i3} \epsilon_{ab} \theta^{a} \dot{\theta}^{b} + \dots \end{bmatrix}$$
one-magnon
emission
two-magnons
emission

• Structure completely dictated by symmetry \rightarrow just need c_1

- Recall that the dark matter interacts via spin density, s(x)
- Easily computed as SO(3) Noether current in the EFT:

- Structure completely dictated by symmetry \rightarrow just need c_1
- This allows to bypass difficulties in the standard treatment (failure of the Holsten-Primakoff approach) [Dyson - Phys. Rev. 1956]

SAPIENZA UNIVERSITÀ DI ROMA

15/17

Angelo Esposito

• Use standard QFT methods to compute event rates

[AE, Pavaskar - PRD (2023), 2210.13516]

SAPIENZA UNIVERSITÀ DI ROMA

• Use standard QFT methods to compute event rates

[AE, Pavaskar - PRD (2023), 2210.13516]

• Use standard QFT methods to compute event rates

[AE, Pavaskar - PRD (2023), 2210.13516]

Angelo Esposito

- Anti-ferromagnets, and especially nickel-oxide, seem to be the most promising ones

- Anti-ferromagnets, and especially nickel-oxide, seem to be the most promising ones
- EFT methods can be key to the theoretical studies

SAPIENZA

- Anti-ferromagnets, and especially nickel-oxide, seem to be the most promising ones
- EFT methods can be key to the theoretical studies
- What are the concrete signatures of magnon emission? Can we envision a real experiment?

SAPIENZA

- Anti-ferromagnets, and especially nickel-oxide, seem to be the most promising ones
- EFT methods can be key to the theoretical studies
- What are the concrete signatures of magnon emission? Can we envision a real experiment?

Thank you for the attention!

SAPIENZA