ASTAROTH, an innovative detector for dark matter direct detection experiments

V. Toso¹ for the ASTAROTH Collaboration

15th International Workshop on the Identification of Dark Matter Jul 8-12 2024 L'Aquila (Italy) ¹Università degli Studi di Milano, INFN Milano

Using NaI(TI) is of fundamental importance to test the positive observation of DAMA experiment.

DAMA/LIBRA phase-2

- Exposure: 1.13 ton x year (6 years)
- Sensitive mass: about 250 kg of radio-pure Nal(Tl) crystals
- Read-out with PMTs, no veto

Using NaI(TI) is of fundamental importance to test the positive observation of DAMA experiment.

DAMA/LIBRA phase-2

- Exposure: 1.13 ton x year (6 years)
- Sensitive mass: about 250 kg of radio-pure Nal(Tl) crystals
- Read-out with PMTs, no veto

Simplified scenario: Basic hypotheses on DM Interaction (standard Halo distribution, spinindependent coupling).

Using NaI(TI) is of fundamental importance to test the positive observation of DAMA experiment.

DAMA/LIBRA phase-2

- Exposure: 1.13 ton x year (6 years)
- Sensitive mass: about 250 kg of radio-pure Nal(Tl) crystals
- Read-out with PMTs, no veto

Pushing the detection energy threshold below the 1 keV limit allows disentangling of different DM candidates

Simplified scenario: Basic hypotheses on DM Interaction (standard Halo distribution, spinindependent coupling).

Using NaI(TI) is of fundamental importance to test the positive observation of DAMA experiment.

DAMA/LIBRA phase-2

- Exposure: 1.13 ton x year (6 years)
- Sensitive mass: about 250 kg of radio-pure Nal(Tl) crystals
- Read-out with PMTs, no veto

SABRE background at low energy

Noise due to PMTs

Overcoming limitations

Objectives:

- Surpass PMT technology to reduce non scintillating noise
- Enhance Light Yield (phe/keV)

Overcoming limitations

Objectives:

- Surpass PMT technology to reduce non scintillating noise
- Enhance Light Yield (phe/keV)

Silicon PhotoMultipliers (SiPM) can replace PMTs:

- Arrays are more compact
- SiPM technology features lower dark noise than PMTs at T < 150 K
- Lower intrinsic radioactivity
- SiPMs have **higher PDE** (> 50%) at NaI(TI) scintillation wavelength (420 *nm*) w.r.t. 30 35% of PMTs

Overcoming limitations

Objectives:

- Surpass PMT technology to reduce non scintillating noise
- Enhance Light Yield (phe/keV)

Silicon PhotoMultipliers (SiPM) can replace PMTs:

- Arrays are more compact
- SiPM technology features lower dark noise than PMTs at T < 150 K
- Lower intrinsic radioactivity
- SiPMs have **higher PDE** (> 50%) at NaI(TI) scintillation wavelength (420 *nm*) w.r.t. 30 35% of PMTs

Use of SiPMs implies a cryogenic setup:

Liquid argon provides cooling power and can double as VETO detector (LAr scintillation at 128 *nm*) if equipped with PMTs or SiPMs.

ASTAROTH: All Sensitive crysTal ARray with IOw THreshold

INFN R&D project aiming at lowering the detection energy threshold down to the sub-keV region for DM direct detection with NaI(TI) crystals

ASTAROTH: All Sensitive crysTal ARray with IOw THreshold

INFN R&D project aiming at lowering the detection energy threshold down to the sub-keV region for DM direct detection with NaI(TI) crystals

ASTAROTH will use NaI(TI) crystals (presently: $5 \times 5 \times 5 \ cm^3$) read on all six faces by SiPM matrices, operating at temperatures in the range 80 – 150 K

- Exact temperature to be tuned at runtime considering SiPM and crystals requirement

Crystals must be sealed in special quartz containers (Nal(TI) is hygroscopic)

A low radioactivity copper frame allows the mounting of SiPMs

SiPM & readout on PCB mounted on Cu support

Detector design: mechanics

Design requirement: ensuring crystals survival and stable read-out from the Electronics.

- Dual-wall, vacuum-insulated radio-pure copper chamber, featuring a specially designed Stainless Steel (SS) thermal bridge between the two walls.
- Chamber is immersed in a LN2/LAr bath providing cooling power only by conduction through the SS bridge.
- Power is released through a heater to tune the temperature within the range
- Low pressure Helium gas fills the inner volume, serving as heat-transfer medium to the crystals

low pressure Helium gas: heat conduction, thermal inertia

A DECEMBER OF

Detector design: mechanics

Design requirement: ensuring crystals survival and stable read-out from the Electronics.

- Dual-wall, vacuum-insulated radio-pure copper chamber, featuring a specially designed Stainless Steel (SS) thermal bridge between the two walls.
- Chamber is immersed in a LN2/LAr bath providing cooling power only by conduction through the SS bridge.
- Power is released through a heater to tune the temperature within the range
- Low pressure Helium gas fills the inner volume, serving as heat-transfer medium to the crystals

System performance:

- Investigated range: 80 150 K.
- Temperature stability in time, during data taking, < 0.1 K.
- Ramp up/down slower than 20 K/h.
- Spatial gradients (over crystal dimensions) < 1 K .

UNIVERSITÀ

DEGLI STUDI DI MILANO

Detector design: mechanics

Design requirement: ensuring crystals survival and stable read-out from the Electronics.

- Dual-wall, vacuum-insulated radio-pure copper chamber, featuring a specially designed Stainless Steel (SS) thermal bridge between the two walls.
- Chamber is immersed in a LN2/LAr bath providing cooling power only by conduction through the SS bridge.
- Power is released through a heater to tune the temperature within the range
- Low pressure Helium gas fills the inner volume, serving as heat-transfer medium to the crystals

System performance:

- Investigated range: 80 150 K.
- Temperature stability in time, during data taking, < 0.1 K.
- Ramp up/down slower than **20 K/h**.
- Spatial gradients (over crystal dimensions) < 1 K .

SiPM arrays "tile"

		Firm	Tech	Model	Tile size (mm²)	Devices	Area (mm²)	Also used	Pitch (µm)	Route	Gang	Ch	Resin
	1	FBK	NUV- HD-Cryo	custom	50x50	24	8x12	DS-20k	35	Wire bond	2s3p	4	ероху
	2	НРК	S13361	6050AS-08	50x50	64	6x6	Dune	50	TSV	no	64	silicon
	3	FBK	NUV- HD-Cryo	custom	50x50	64	6x6	Dune	30	Wire bond	no	64	ероху
C	F 2	BK cu 4 SiPf	istom V array	0	6	2 Hamam 54 SiPM	atsu array			FB	3 K 64 S	SiPM	l array

Test performed with:

- Cylindrical 5×5 cm ($H \times \oslash$) NaI(Tl) crystal

Nal(tl) crystal Quartz case

Test performed with:

- Cylindrical 5×5 cm ($H \times \emptyset$) NaI(TI) crystal
- Teflon reflector on the other faces

Nal(tl) crystal Quartz case

Teflon reflector

Test performed with:

- Cylindrical 5×5 cm ($H \times \emptyset$) NaI(TI) crystal
- Teflon reflector on the other faces
- Copper frame for SiPM array installation

Teflon reflector

Test performed with:

- Cylindrical 5×5 cm ($H \times \emptyset$) NaI(TI) crystal
- Teflon reflector on the other faces
- Copper frame for SiPM array installation
- FBK SiPM array on 1 face of the crystal

Teflon reflector

SiPM array

Test performed with:

- Cylindrical 5×5 cm ($H \times \oslash$) NaI(TI) crystal
- Teflon reflector on the other faces
- Copper frame for SiPM array installation
- FBK SiPM array on 1 face of the crystal
- 241Am (Y peak @ ~60 keV)

Nal(tl) crystal Quartz case

Teflon reflector

SiPM array

Histograms of amplitudes

Histograms of amplitudes

Histograms of amplitudes

Histograms of photo-electrons

Low-energy region

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

1) Quartz case:

Nal(tl) crystal

Quartz case

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

1) Quartz case:

Nal(tl) crystal

Geant4 optical simulation:

Multiple scattering More than 50% of photons absorbed

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

2) Encapsulation with epoxy resin:

A "cooking recipe": Step 1: prepare the resin substrate

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

2) Encapsulation with epoxy resin:

A "cooking recipe": Step 1: prepare the resin substrate

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

2) Encapsulation with epoxy resin:

A "cooking recipe": Step 2: crystal encapsulation

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

2) Encapsulation with epoxy resin:

21 mm Nal(Tl) crystal

Loctite Stycast 1266 resin

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

2) Encapsulation with epoxy resin:

21 mm NaI(Tl) crystal

EPO-TEK resin

45 mm Nal(Tl) crystal

Conclusions and outlook

- The ASTAROTH project aims to use **SiPMs to improve the sensitivity** of state-of-art dark matter direct detection experiments with NaI(TI)
- A demonstrator detector has been produced, featuring an encapsulated cubic crystal (5×5×5 *cm*³) operated at tunable temperatures in a specially built cryostat
- By covering **only one face** of the crystal, ASTAROTH has demonstrated that it is possible to observe scintillation events at or below the keV_{ee} scale
- Given the success achieved in this first phase, the project proceeds towards a second step: **ASTAROTH_beyond**
- A better light collection given by an innovative crystal encapsulation method and the complete coverage of the crystal will allow to increase the LY and to reduce the energy threshold

Backup slides

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

Deposition of a thin parylene film (1-10 μ m):

Not transparent, poor adhesion, non-uniformity

Delay time versus amplitude @ 77 K

Trigger conditions

Trigger conditions

Sensitivity study

The ASTAROTH technology demonstrator will feature 1-2 encapsulated, 5×5×5 cm³ NaI(TI) crystals (0.46 kg each), operated on the surface.

Early **sensitivity studies** were performed on a **full-scale detector** featuring 8 encapsulated, 10×10×10 cm³ Nal(Tl) crystals operated underground.

In the plot, 0.19 events/kg/day/keV (dru) in the [0.2-6.0] keV window are assumed. Exposure: 30 kg x 3 y

Experimental setup

Essential for manipulating the crystals while avoiding degradation caused by air moisture

Different encapsulation techniques:

2) Encapsulation with epoxy resin:

A "cooking recipe": Step 1: making the silicone mold

Essential for manipulating the crystals while avoiding degradation caused by air moisture Different encapsulation techniques:

2) Encapsulation with epoxy resin:

Moisture stains present on the crystal even before encapsulation

21 mm NaI(Tl) crystal

MasterBond EP29LPSP resin

Problems during cooling in LN2

Identification of the peaks for amplitude normalization

DCR vs Temperature

