The Duter Outer Detector

Alberto Uson on behalf of the LZ Collaboration

Outline

- The LZ experiment and motivation for a veto system
- The Outer Detector and its backgrounds
- Calibration and monitoring
- Neutron tagging efficiency
- Performance during Science Runs

The LUX-ZEPLIN (LZ) experiment

- Optimised for searching **WIMP**s with masses in above $\sim 5 \text{ GeV/c}^2$
- axions, etc
- Located in the Davis Cavern of SURF (Lead, South Dakota)
- - Most backgrounds are Electron Recoils (ER) 0

Alberto Uson - auson@ed.ac.uk

More info in [*I. Olcina Talk*]

NR backgrounds in LZ: neutrons

- lacksquare
- Among them, **neutrons** are the predominant ones, they are mainly produced through:
 - Natural radioactivity in detector components or cavern: 0
 - 0 contain low-Z materials)
 - Induced by atmospheric muons 0
- Some assets can be leveraged to distinguish from WIMP signal:

	# interaction in LXe	Location in active TPC	Interaction in surrounding materials
WIMPs	1	Homogeneous	No
neutrons	1 or more	Closer to TPC boundaries	Yes

Some backgrounds -e.g. $CE\nu NS$ neutrinos or leakage ER events- can also produce WIMP-like NR recoils.

 (α,n) reactions \rightarrow single neutrons often without coincident γ 's. Main sources being: PTFE, PMT (as they

• Spontaneous fission from heavy nuclei (^{238}U , ^{235}U , ^{232}Th) \rightarrow several n's (~ 2) and coincident γ 's (~ 6)

The LZ neutron veto system: Skin+OD

 \bullet

2t-LXe region between TPC outer walls and inner the bottom

The LZ neutron veto system

Signature of neutron events in the detector system:

- 1. Single or multiple scatters in TPC
- - In $\mathbf{H} \rightarrow \text{Single 2.2 MeV } \gamma$

Alberto Uson - <u>auson@ed.ac.uk</u>

The LZ Outer Detector

- background contribution) and gamma backgrounds
- Likewise, the OD allows increasing the TPC fiducial volume, with a direct consequence in the exposure

arXiv:1703.09144 [physics.ins-det] (2017)

Alberto Uson - <u>auson@ed.ac.uk</u>

Then, the outer detector is a fundamental piece in the experiment to tag and reduce the number of neutrons (main NR)

OD backgrounds

- Events with OD depositions that are neutrons/gammas uncorrelated with TPC \bullet
- Main sources:
 - **Davis Cavern** γ 's from intrinsic radioactivity of cavern walls 0
 - Dominates OD event rate above 200 keV
 - NaI detector (a) 9 different positions used to measure flux

	⁴⁰ K - 1461 keV	²³⁸ U - 1764 keV	232
Average activities [Bq/kg]	220 ± 60	29 ± 15	

Detector components radioactivity 0

- Main contributions: OD PMTs, Acrylic and supports, and cryostat vessel
- $\alpha/\beta/\gamma$ decays from radioimpurities dissolved in GdLS
 - Activities measured with custom-made screener
 - Most significant sources of background:

 \rightarrow ²³⁸U chain, ²³⁵U chain, ¹⁴C, ¹⁵²Gd, ¹⁴⁷Sm, ¹⁷²Lu

300

400

500

600

800

Pulse Area (phe)

900

700

 10^{-6}

10

100

200

OD backgrounds

- Events with OD depositions that are neutrons/gammas uncorrelated with TPC
- Main sources:
 - Davis Cavern γ 's from intrinsic radioactivity of cavern walls
 - Dominates OD event rate above 200 keV
 - NaI detector @ 9 different positions used to measure flux

	⁴⁰ K - 1461 keV	²³⁸ U - 1764 keV	232
Average activities [Bq/kg]	220 ± 60	29 ± 15	

• Detector components radioactivity

- Main contributions: OD PMTs, Acrylic and supports, and cryostat vessel
- $\alpha/\beta/\gamma$ decays from radioimpurities dissolved in GdLS
 - Activities measured with custom-made screener
 - Most significant sources of background:

 \rightarrow ²³⁸U chain, ²³⁵U chain, ¹⁴C, ¹⁵²Gd, ¹⁴⁷Sm, ¹⁷²Lu

OD calibration and light yield studies

- 35 LED-driven optical fibres used to calibrate and monitor PMT single photon \bullet response Nucl. Inst. Meth. A (2021) 165551
- Uniformly distributed ²¹⁹Rn and ²¹⁵Po alphas from backgrounds used for:
 - Studying light yield position dependence $\rightarrow \sim 10\%$ maximum variation with Z 0
 - OD Z (74.8 cm) and θ (0.24 rad) spatial resolution 0
 - Checking time stability during Science Runs 0

Alberto Uson - <u>auson@ed.ac.uk</u>

- <u>OD neutron tagging efficiency performed in LZ with a variety of neutron sources. Main ones:</u>
 - AmLi: low-energy (<1.5MeV $\equiv \sim45$ keV_{nr}) neutrons 0
 - AmBe: energies up to ~11 MeV (\equiv ~330 keV_{nr}) 0

 \rightarrow around 58% accompanied with prompt 4.4 MeV gamma.

DD generator with configurable neutron energy distributions close to the top of TPC (fixed) 0 - e.g. <u>direct mode</u> \rightarrow monoenergetic 2.45 MeV (~74 keV_{nr})

Neutron tag studies with OD

Both deployed in CSD tubes (3) azimuth angles) at configurable positions along the TPC height

Neutron tagging efficiency for First Science Run (SR1)

- 3 AmLi sources at different azimuthal angles used for given Z positions: 0, 70, and 140 cm (from TPC bottom)
- E.g. Z = 70 cm:

- 1σ cut around SS NR band to ensure neutron sample
- Events vetoed if contain pulses in any of these 4 windows (configured for 5% deadtime):
 - <u>Skin Prompt</u>: >2.5phe pulses with * ΔT_{skin} in (-0.5, 0.5) μ s
 - <u>OD Prompt</u>: pulses with ΔT_{OD} in (-0.3, 0.3) μ s
 - <u>Skin Delayed</u>: >50phe pulses with ΔT_{skin} in (0.5, 1200) μ s
 - <u>OD Delayed</u>**: >37.5phe pulses with ΔT_{OD} in (0.3, 1200) μ s

Total neutron tagging efficiency averaged across Z positions with AmLi source: $89 \pm 3\%$

* $\Delta T_{skin,OD} \equiv t_{S1} - (t_{pulse})_{skin,OD}$

**Rate of accidental pulses (due to windows size) accounted for in the associated tagging efficiency

OD constraints for SR1 WIMP Search (WS)

Neutron background for WIMP search [*I. Olcina talk*] constraint assessed via two ways:

- <u>Auxiliary fit</u> (and analogous to WS) to events passing all cuts except <u>OD veto</u>:
 - Non-neutron events with accidental OD-TPC coincidence taken into account (5%)
 - Best-fit values for each contribution in 60 days:

OD tagged	Source	Expected Events	Fit
	Solar ν ER	1.44 ± 0.03	1.4
	Detector neutrons	0.8	C
	³⁷ Ar	2.9 ± 0.5	2.
OD-laggeu	136 Xe	0.79 ± 0.12	0.7
events	127 Xe	1.6 ± 0.2	1.
	β decays + Det. ER	10.7 ± 2.6	11
	Accidentals	0.09 ± 0.03	0.1
	Total	18.2 ± 2.7	18

• Which corresponds to $0.0^{+0.2}$ neutrons in 60 days $\times 5.5$ t exposure in the WIMP fit region

OD constraints for SR1 WIMP Search (WS)

Neutron background for WIMP search [*I. Olcina talk*] constraint assessed via two ways:

- Auxiliary fit (and analogous to WS fit) to events failing OD veto, but passing the rest of cuts
- Conversion from <u>sideband MS potential neutrons</u>:
 - OD delayed window reduced from 1200 μ s to 400 μ s
 - OD pulse area threshold from 37.5 phe to 400 phe
 - Wider S1*c* ROI, extended up to 500 phd
 - As a result: **10 MS** neutron candidates in SR

- MS:SS ratio = 2.3:1 (from sims) - 49% OD veto eff. for sideband selectio. - 20% OD veto inefficiency for WS sel. (from AmLi) - Survival fraction for FV and ROI (from sims)

• 0.29 events in the WS surviving OD veto, and 1.1 tagged by veto (in 60 days)

post-SR1 OD performance

- Very good performance of the Outer Detector during SR1 WS, really useful to understand neutron backgrounds
- The LZ Outer Detector keeps informing about neutrons in current science run \rightarrow Stay tuned for upcoming results!
- Currently, more extended studies: with more sources employed, and better understanding of the detector

Alberto Uson - auson@ed.ac.uk

Thank you for listening! And to our sponsors and 38 participating institutions:

- **Black Hills State University**
- **Brookhaven National Laboratory**
- **Brown University**
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- **Northwestern University** •
- Pennsylvania State University
- Royal Holloway University of London
- **SLAC National Accelerator Lab.**
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.

And don't forget to check all the LZ contributions in the conference!:

Texas A&M University

- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield

- University of Texas at Austin
- University of Wisconsin, Madison

• University of Zürich

US Asia Furope

"An update on the LUX-ZEPLIN (LZ) experiment's search for dark matter" (talk) I. Olcina

"Electric fields & their effects in the LUX-ZEPLIN detector" (Poster) S. Dey

(Poster) J. Green

"Bringing back the senses to LUX ZEPLIN" (Poster) **A Swain**

LZ Collaboration Meeting at SURF, June 2023

GdLS composition

Alberto Uson - auson@ed.ac.uk

Outer detector

Alberto Uson - <u>auson@ed.ac.uk</u>

OD backgrounds spatial distribution

OD geometry

OD light yield temporal evolution

Alberto Uson - <u>auson@ed.ac.uk</u>

Phys. Rev. D 95, 072006 (2017)

GdLS radioimpurities measurement

Alberto Uson - <u>auson@ed.ac.uk</u>

Low pulse area region (dominated by C-14)

23

