

Searching for Light Dark Matter with Narrow-Gap Semiconductors: The SPLENDOR Experiment

Samuel L. Watkins on behalf of the SPLENDOR Collaboration

Director's Postdoctoral Fellow IDM 2024

LA-UR-24-26824

Light Dark Matter Candidates

- Plenty of DM candidates below the GeV scale (and the classic WIMP)
- Fermionic dark matter in the sub-MeV regime is largely unexplored
 - Inelastic recoil with an electron
- Bosonic dark matter in the sub-eV regime is largely unexplored
 - Absorption of the DM particle at energy equal to the DM mass

arXiv:1707.04591

DM Mass

DM-Electron Scattering

- Inelastic processes allows for probing of lower DM masses
- Many experiments are using semiconducting detectors for DM currently
 - Down to the MeV-scale for fermionic DM
 - Down to the eV-scale for bosonic DM

Light Dark Matter Kinematics

- Low kinetic energy of DM requires targets ۲ sensitive to very small energy depositions
- Existing detection technologies have • O(eV) thresholds

zeV

Probing fermionic DM with masses below • O(MeV) requires new detection techniques

DM Mass:

Ionization Detection with Intrinsic Semiconductors

- Various existing technologies being used:
 - Charge-Coupled Devices (CCDs)
 - High-Purity Germanium (HPGe) detectors
 - Phonon detectors based on Neganov-Trofimov-Luke (NTL) gain
- All sensitive to electron recoils to varying degrees

Dark Rates

- Need to reduce the backgrounds
- Sources include:
 - Cosmogenic activation
 - Isotopic contamination of electronics
 - External backgrounds
- Need:
 - High purity materials
 - Excellent shielding

6

Narrow-Gap Semiconductors in SPLENDOR

- Search for Particles of Light Dark Matter with Narrow-Gap Semiconductors
 - One R&D path to sensitivity to lower DM masses
- Candidate materials with O(1-100 meV) gaps developed at LANL:
 - $Eu_5In_2Sb_6$, $La_3Cd_2As_6$, EuP_2Zn_2

Charge Collection in SPLENDOR

- Dark current should scale with voltage bias
- The full collection regime is conservative approach
 - Optimizes charge collection
 - Minimizes dark current

- Avalanche mode could create a large increase in dark current
- Sacrifices ability to reconstruct event energies

Materials Response

- Initial resistivity measurements indicate activated behavior with band gaps of O(1-100 meV)
 - Indicates sub attoAmps dark rates at mK temperatures
- Materials have photoresponse to IR light
- Beginning to show signs of full charge collection
 - Ongoing studies at lower temperatures

 $\rho(T) = A \exp[(T_0/T)^{\beta}]$

SPLENDOR's detection scheme utilizes a mix of in-house and commercial technologies

SPLENDOR

SPLENDOR

Detector Style

- Start with well-known point contact design
 - i.e. similar to HPGe detectors

- Detector housing
 - Minimize capacitance by placing detector ---material as close to 10 mK board as possible

07/09/2024

- Can easily switch between substrates

Cryogenic Charge Amplifier

- Use fully cryogenic amplifier technology
 - Low thermal noise

os Alamos

- Use High Electron Mobility Transistors •
 - Essentially a JFET that works at cryogenic temperatures
- Split-stage cryogenic HEMT-based amplifier
 - 4 K gain stage with 200 pF HEMT
 - 10 mK buffer stage with 1.6 pF HEMT (buffers the upstream capacitance)

$$\sigma_E \sim E_{gap} \times \sigma_V \times (C_{detector} + C_{input} + C_{parasitic})$$

charge resolution (goal: $\sigma_{e^-} \sim O(1) e^-$)

Charge Amplifier Preliminary Performance

• Two-stage amp prototype has achieved a $5e^-$ charge resolution!

Running with Silicon

• Signals are apparent with a Si test substrate

- Now running with Eu₅In₂Sb₆
 - Stay tuned!

DM Sensitivity

- Narrow bandgap materials can significantly expand our low-mass DM reach
 - Using tried-and-true detection techniques
- Near-term goals of SPLENDOR:
 - Continued optimization of HEMT operating conditions
 - Hunting noise sources
 - Surface DM search dataset expected later this year with prototype detector

Backup

Some Known Detector Materials with Narrower Gaps

- InSb
 - Band gap of 170 meV
- Hg_{1-x}Cd_xTe
 - Tunable to have a gap between 0 and 1.5 eV based on doping
- Highly doped Si
 - Tunable to have a gap between 0 and 1.1 eV
- Problem:
 - Each have high dark rates and lower mean free paths
 - Need new, scalable materials with narrow band gaps and low dark rates

Manimimuning a find a fundaming and a find a

Charge Collection In Ionization Detectors

Low E-Field

- Field too low to separate electron-hole pair excitons
- Small to no signal response

Incomplete Collection

Intermediate E-Field

- Field strong enough to separate excitons
- Drift charges full length of detector

Full Collection

High E-Field

- Drifted charges have enough kinetic energy to create new excitons – "impact ionization"
- Can create chain reaction of charges

Avalanche mode

