

Discovery potential of fermionic dark matter by using the Xe Charged Current tagging in KamLAND-Zen

RCNS, Tohoku Univ.

Koga Tachibana

Contents Introduction Abstracts of XeCC at KamLAND-Zen 800 Analysis methods • Efficiency estimation Discovery potential Summary

KamLAND collaborations

> 50 physicists work on this project

3

UNIVERSITY of HAWAI'I*

or Tokushima University

Introduction: KamLAND detector

Kamioka Liquid scintillator Anti Neutrino Detector Inner detector (ID)

- 1 kt Liquid scintillator (LS)
- 1325 (17-inch) + 554 (20-inch) PMTs
- Photo coverage 34%
- Energy resolution 6.7 %/ \sqrt{E} [MeV]
- Physics observation
- Outer detector (OD)
 - 3200 t Pure water
 - 140 20-inch PMTs
 - Veto to muon

Main detection channel

Introduction: KamLAND-Zen experiment

Zero-neutrino double-beta decay search

- Outer balloon
 - PC + Dodecane + PPO mixture
 - \sim 1k ton pure liquid scintillator

Inner balloon

- ¹³⁶Xe is enriched to $\sim 90\%$
- ~750 kg Xe-loaded liquid scintillator

Feature

- Ultra-low radioactive environment ¹³⁶Xe liquid scintillator Long $2\nu\beta\beta$ half-life 0vββ Q-value: 2.46 MeV Dissolved into liquid scintillator at 3%
- Latest result (<u>https://arxiv.org/pdf/2406.11438</u>):

Exposure: 2.097 ton yr

- $T^{0\nu\beta\beta_{1/2}} > 3.8 \times 10^{26} \text{ yr} (90\% \text{ C.L.})$

Introduction: $\chi / \nu + {}^{136}Xe \rightarrow {}^{136}Cs^* + e^-$

Main observable modes

- Feature
 - Transition to g.s. (5⁺) is highly suppressed
 - Mostly goes to the excited states (1⁺ state: 590 keV and 840 keV)
- Energy threshold: 79 + 590 = 670 keV
- BG reduction by delayed coincidence
- Low-lying isomeric state with O(100) ns lifetime observed recently
 - Double or triple coincidence
- ▶ 590 → 140 → 74 → g.s (Mode1: 58%, 90 +157 ns)
- ▶ $590 \rightarrow 140 \rightarrow 105 \rightarrow \text{g.s}$ (Mode2: 14%, 90 ns)

▶ $590 \rightarrow 422 \rightarrow 314 \rightarrow 74 \rightarrow g.s$ (Mode3: 27%, 157 ns)

1			5	Ъъ.,
	1	1		-
	ĴĹ.	J	1	

 \mathbf{b}

Introduction: $\chi / \nu + {}^{136}Xe \rightarrow {}^{136}Cs^* + e^-$

Absorption of Fermionic dark matter (FDM)

• KamLAND-Zen 800

- Drastic improvement of sensitivity by using XeCC tagging method
- Large exposure than EXO-200 ($\times \sim 6$)

EXO-200

- $0\nu\beta\beta$ search experiment using ¹³⁶Xe TPC
 - m_χ range: 1.6 11.6 MeV
 - Minimum cross-section: 6×10^{-51} cm² at 8.3 MeV (90% C.L.) Measuring recoil electron
- Sensitivity is limited at low mass (visible) region due to¹³⁶Xe $2\nu\beta\beta$ BGs

XeCC at KamLAND-Zen 800

• DAQ

- Zen 800 period (Feb 5, 2019 Jan 12, 2024)
- Trigger threshold: ~ 0.3 MeV
- Only 1st pulse can be triggered

2nd & 3rd pulse can be detected if in the event window of the 1st pulse (~ 200 ns)

- Single vs Multi pulse discrimination
 - Double or triple pulse fitting

Potential backgrounds

- Miss identified $2\nu\beta\beta$
- Correlated BGs: ²¹⁴BiPo in nylon film
 - Fiducial volume cut for double-pulse search
- Accidental BG: ${}^{14}C + 2\nu\beta\beta$
 - ¹⁴C probability
 - : few kHz (rate) × 200 ns (time window)
 - Vertex recon. of 2nd (or 3rd) pulses required

ToyMC signal (Mode 2)

 χ^2 / ndf

Analysis method: Triple pulse fitter

• BG source

- Miss-identification of single pulse $(2\nu\beta\beta) \rightarrow$ Fitter
- Accidental: $2\nu\beta\beta + {}^{14}C \rightarrow Vertex reconstruction$
- Correlated: ${}^{212}\text{BiPo} \rightarrow \text{Fiducial volume cut}$
- Fitter development
 - Do not miss ID single-pulse and multi-pulse
 - Discriminate true multi-pulse and fake multi-pulse from accidental
 - Possibility of miss ID because of close pulse to pulse distance

Distinguish waveforms from χ^2 obtained by fitting

- Event window: 200 ns
- Consider fluctuation (E₁, E₂, E₃, t₂, t₃)

Efficiency estimation

Evaluation of energy dependence of eff. by ToyMC

- Signal
 - Recoil e⁻⁺ multiple de-excited γ -ray \rightarrow True multi-pulse
 - Background
 - Miss-identification of single pulse by $2\nu\beta\beta$
 - $2\nu\beta\beta + {}^{14}C\beta$ -decay
- ToyMC conditions
 - 3 decay modes are generated based on the branching ratio
 - The number of hits has statistical fluctuation
 - Hit time depends on the lifetime of each mode (pulse-to-pulse distance is random)
 - FDM mass $m_{\chi} = 1.181$ (minimum) 2.3 [MeV] ($2\nu\beta\beta$ dominant region)

 \rightarrow Fake multi-pulse

Efficiency estimation

Event selection criteria

- Signal efficiency
 - Generate triple pulse (mode1) \rightarrow 1pulse, 3pulse fit \rightarrow get χ^2 xeCC (single triple)
 - Generate double pulse (mode2 & mode3) \rightarrow 1pulse, 3pulse fit \rightarrow get χ^2_{XeCC} (single triple)
- BG efficiency
 - Generate single pulse \rightarrow 1pulse, 3pulse fit \rightarrow get χ^2 2n2b (single triple)

The cut threshold is optimized to maximize FoM from the obtained χ^2

BG $(m_{\chi} = 2.0 \text{ MeV})$ h12_2n2b 100000 Entries Mean y 4.805 Std Dev x 2.439 Std Dev y 3.249 ²2n2b (single -triple) 25 20 20 6000 4000 \varkappa 2000 χ^{2} 2n2b (single - double)

 $\rightarrow \chi^2_{\text{single}}$ - triple makes it easier to determine whether single or multi pulse

1			0	h.,
1	5	٩.		-
	ſ.	ſ	١.,	

Efficiency estimation $(2 \nu \beta \beta + Accidental)$

Number of BGs

• $2\nu\beta\beta$ single event generated by Monte Carlo simulation

• ¹⁴C accidental pile-up event generated by Monte Carlo simulation

Decay rate = 3582 Hz

- Total number of MC events: 3M
- $T^{2v_{1/2}} = 2.26 \times 10^{21} \text{ yr}$
- $N_{136Xe} = 1.261 \times 10^{29} / kt XeLS$
- Zen-800 period = 997.1 days
- Energy resolution 7.69 % $\rightarrow \sim 0.1$ [MeV/bin] $\sqrt{E \text{ [MeV]}}$ • R < 1.6 m

Efficiency estimation

Figure of merit

 ϵ_{signal} FoM = $a/2 + \sqrt{N_{BG} \cdot \epsilon_{BG} + N_{accidental}}$

0 signal expected FoM formula

 $m_{\chi} = 2.0 \text{ MeV}$

- *a*: significance (90 % C.L. \rightarrow 1.28)
- N_{BG} : Number of $2\nu\beta\beta$
- *N_{BG}*: Number of accidental pileup $(2\nu\beta\beta + {}^{14}C)$

-		1	1	÷.,
ī,	į.	٩.	2	-
	ſ.	ſ	١.,	

Discovery potential

- ---- EXO-200; Upper limit (90 % C.L.)
 - LHC; Upper limit (90 % C.L.)

~O(2) Improvement of sensitivity

• Cross section

$$R = \frac{\rho_{\chi}}{2m_{\chi}} \sum_{j} N_{T,j} (A_j - Z_j) \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)}{2\pi \Lambda^4 (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)}{2\pi \Lambda^4 (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^2}{2\pi \Lambda^4 (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_{\chi}) (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_{\chi}) (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_{\chi}) (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_t^4) (m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_{\chi}) (m_{\chi} - m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_{\chi}) (m_{\chi} - m_{\chi} - m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_{\chi}) (m_{\chi} - m_{\chi} - m_{\chi} - m_{\chi} - m_t^4)} \frac{|\vec{p}_e|_j^3 \mathcal{F}(Z_j + 1, \gamma_j)|}{2\pi \Lambda^4 (m_{\chi} - m_{\chi}) (m_{\chi} - m_{\chi} -$$

(https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.012007)

Summary

- Feasibility of XeCC detection by multi-pulse tagging in KamLAND-Zen was studied
- Tagging efficiency is better at Lighter m_{χ}
- Introducing the XeCC tag yields Upper Limits as strict as O(2)
- We need to mitigate accidental BG from ¹⁴C
 - Vertex recon. of delayed pulse etc
- 2.5 MeV $< m_{\chi}$: Analysis by electron recoil

1			1	Ъъ.,
ī.	Į.	٩.	2	
	ſ.	J	١.,	

KamLAND DAQ systems

- KamFEE (KamLAND Front-End electronics)
 - Signal waveform digitized by ATWD (Analog Transient Waveform Digitizer)
 - Sample interval: ~1.5 ns
 - Number of samples per waveform: 128
- MoGURA (Module for General-Use Rapid Application)
 - Eliminating dead time caused by high rate after pulse and overshoot after cosmic ray muons

Event window: ~ 200 ns

-		1	1	÷.,
ī,	į.	٩.	2	-
	ſ.	ſ	١.,	

KamFEE trigger systems

- GPS Trigger
 - **1PPS trigger:** A trigger without external trigger issue based on 1PPS of GPS.
 - 1PPS global acquisition trigger: A forced DAQ trigger for all ID and OD based on 1PPS of GPS.
 - **GPS trigger:** A forced DAQ trigger issued every 32 seconds.
- ID Nusm Trigger
 - ID singles trigger: A DAQ trigger for the entire ID issued when number of ID hits (N_{ID}) exceeds the threshold of the ID singles trip threshold, which was set to 60 in the runs of KamLAND-Zen 800.
 - **ID prompt trigger:** A DAQ trigger for the entire ID issued when the number of ID hits (N_{ID}) exceeds the threshold of ID prompt trigger threshold, which is also 60 in KamLAND-Zen 800. Then, the DAQ accept ID delayed trigger for the variable delayed time window, which was set to \sim 1.2 msec in KamLAND-Zen 800.
 - ID delayed trigger: A DAQ trigger for the entire ID issued when the number of ID hits (N_{ID}) exceeds the threshold of the ID delayed trigger threshold in the delayed time window.
 - ID prescale trigger: A DAQ trigger for the entire ID issued when the number of ID hits (N_{ID}) in the prescale time after 1PPS trigger (sim 10) msec) exceeds the threshold of the ID prescale trigger threshold.
 - OD to ID trigger: A DAQ trigger for the entire ID issued when one of OD Nsum triggers is issued.

• OD Nusm trigger

the	- OD top singles trigger: A DAQ trigger for the entire OD issu
igger	the number of OD top PMT hits (N_{top}) exceeds the threshold of
00	singles trigger threshold.

- OD middle singles trigger: A DAQ trigger for the entire OD issued when the number of OD middle PMT hits (N_{middle}) exceeds the threshold of OD middle singles trigger threshold.
 - **OD bottom singles trigger:** A DAQ trigger for the entire OD issued when the number of OD bottom PMT hits (N_{bottom}) exceeds the threshold of OD bottom singles trigger threshold.
- OD global singles trigger: A DAQ trigger for the entire OD issued when the number of entire OD PMT hits (N_{global}) exceeds the threshold of OD global singles trigger threshold.
- **ID to OD trigger:** The DAQ trigger for the entire OD issued when one of ID Nsum triggers is issued.

Absorption cross-section (calculation)

 m_{χ} [MeV]

https://arxiv.org/pdf/1908.10861