

The SENSEI[†] Experiment: sub-GeV dark matter searches with skipper-CCD

A. M. Botti* for the SENSEI† collaboration 15th International Workshop on the Identification of Dark Matter 2024 · L'Aquila

July 10th, 2024

Image: SENSEI sensor

* Fermi National Accelerator Laboratory · abotti@fnal.gov

† Sub-Electron-Noise Skipper-CCD Experimental Instrument · https://sensei-skipper.github.io

Gensei

The Orensei Experiment

Sub-Electron-Noise Skipper-CCD Experimental Instrument

New generation Charge Coupled Devices **(CCD) LBNL** MicroSystems Lab Energy threshold ~ **1.1 eV** (Si bandgap) and readout noise ~ **0.1 e**⁻

Main goals

- · First DM detector with Skipper-CCDs
- \cdot Validate technology for DM and v detection
- · Probe DM masses at the MeV scale (e recoil)
- Probe axion and hidden-photon DM masses > 1 eV (absorption)

Current and Latest results

4

The Oensei Experiment

	'17	'18	'19	'20	'21-'23	Ongoing
	Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning (12g) at SNOLAB (6000 m.w.e.) + 1st	2nd commissioning (40g) + science run
<u>မ</u> ို 180	4000 samples				science run	
140						
120	, .					
60 40						
20 0_1		4				
	Tiffenberg lawier et al	charge [e]				
	Physical Review Letters 119.13 (2017): 131802.					

Charge-coupled devices (CCD)

‡Fermilab

ensei

6

Example images (real data!)

Traditional CCD

Electrons (curly tracks)

Muons (straight tracks)

X-rays / γ-rays (point-like events)

Skipper- CCD

Example images (real data!)

Traditional CCD

Skipper- CCD

Skipper-CCDs for dark matter

Light-**DM** mass range:

- 1-1000 MeV for e⁻ recoil
- . 1~1000 eV for absorption
- . 0.5~1000 MeV Nucleus recoil (Migdal effect)

Sensitivity to 1,2,3 e⁻ signals needed: Skippers can do this!

But only if we understand and control backgrounds...

R. Essig et al, JHEP 05 (2016), 046

Fermilab Orensei

The Orensei Experiment

'17	'18	'19	'20	'21-'23	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning (12g) at SNOLAB (6000 m.w.e.) + 1st science run	2nd commissioning (40g) + science run
Icm The SENSEI Collaboration Physical Review Letters 121.6 (2018): 061803.					
4	 readout stages 200 um thick 0.1 gram mass 		The SENSEI Collabo Physical review lette	ration rrs 122.16 (2019): 161801.	

2020 New device @ MINOS

- First skipper-CCD optimized for DM detection
- Designed by S. Holland @LBNL
- 5.5 Mpix of 15 µm
- 675 µm thick
- Active mass ~ 2 g
- 20 kΩ
- 4 amplifiers
- T ~ 135 K + vacuum

2023: Milli-charged particles @ MINOS

Extension of previous analysis to 6e-

	$1e^-$	$2e^-$	$3e^-$	$4e^-$	$5e^-$	$6e^-$
Efficiency	0.069	0.105	0.325	0.327	0.331	0.338
Exp. [g-day]	1.38	2.09	9.03	9.10	9.23	9.39
Obs. Events	1311.7	5	0	0	0	0

Fermilab Orensei

'17	'18	'19	'20	'21-'23	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning (12g) at SNOLAB (6000 m.w.e.) + 1st science run	2nd commissioning (40g) + science run
				arXiv:2312.13342	

SENSEI @ SNOLAB: Setup

- Cold copper box for 12 copper tray
- Each tray for 2 (4) ~2g CCDs.
- 6-in copper bricks and hat inner shield
- Vacuum pump (< 2x10^-4 mbar)
- Cryocooler + heater (~140 K)
- 2 layer of copper outer shield
- 3-in lead
- 42-inch polyethylene and water shield

SENSEI @ SNOLAB: 1st run

Setup and operations:

- 6 CCDs (~13 g)
- 6144 × 1024 pixels
- 15 μ m pitch, 675 μ m thick
- Run: 9/2022-4/2023
- 20 hour exposures
- 129 images (~50% blinded)
- 7.3 hours readout, noise of ~0.14 e-
- Temperature variations of 135 K-155 K
- 1 e- density (after cuts): ~2 x 10-4 e-/pixel

SENSEI @ SNOLAB: quality cuts

- **1.** Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels ≥1 e-
- 3. Apply masks to images to remove:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Serial register events
 - Charge transfer inefficiencies
 - Region surrounding any ≥1e- pixels
- **4.** Remove clusters with any pixels overlapping a mask
- 5. Remove individual high-background cluster shapes

SENSEI @ SNOLAB: quality cuts

- 45 unblinded commissioning images,
- 37 blinded images
- 2-10 e- channels
- Combined datasets: ~70 g-days per electron channel with cuts
- Three limits: blinded dataset, commissioning dataset, and combined commissioning + blinded exposure

SENSEI @ SNOLAB: First results

arXiv:2312.13342

'17	'17 '18 '19 '20 '21-'23		Ongoing			
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning (12g) at SNOLAB (6000 m.w.e.) + 1st science run	2nd commissioning (40g) + science run	

SENSEI @ SNOLAB: Second science run

Setup and operations:

- Dedicated run for **1e**⁻ events
- 19 CCDs with new copper trays
- 101 Commissioning (unblinded) images
- 77 Hidden (blinded) images
- 0, 2, 6, 20 hour exposures
- Binned data (1superpix = 32 pix)
- ~ 14 m readout, noise of ~0.14 e-
- Temperature ~ 140 K

SENSEI @ SNOLAB: 1e- density

- Optimized cuts with respect to first run (no low-E mask for example)
- 19 hidden images selected
- Cut efficiencies: (85~97)%

SENSEI @ SNOLAB: rates

- Golden quadrant: (1.4 ± 0.1) x10⁻⁵ e-/pix/day
- Witness quadrants: (2.2 ± 0.1) x10⁻⁵ e-/pix/day
- Lowest ever in Silicon (or NIR/UV photodetector)
- **1 order of magnitude improvement** with respect to last published result (SENSEI 2020)
- SENSEI original goal: 1.0 x 10⁻⁵ e-/pix/day
- Rest of quadrants are still hidden

Quadrant .	Exp. indep. $\times 10^{-6}$	Exp. dep $\times 10^{-5}$	90% U.L. $\times 10^{-5}$
	$e^-/pix/image$	$e^{-}/pix/day$	$e^-/pix/day$
Golden	2.17 ± 0.26	1.39 ± 0.11	1.53
Witness 1	2.39 ± 0.30	2.13 ± 0.13	2.30
Witness 2	2.72 ± 0.32	2.23 ± 0.14	2.41

SENSEI @ SNOLAB: 2nd run 1st results

Open data

Data available in SENSEI papers:

- *Physical Review Letters* 121.6 (2018): 061803.
- Physical review letters 122.16 (2019): 161801.
- Phys. Rev. Lett. 125, 171802 (2020)
- arXiv:2305.04964
- arXiv:2312.13342
- 1e- paper in preparation with data release

Contact us if anything else is needed

	Efficiencies	A	ll da	ta	Hid	den o	lata
Shape	Diff./ID/Geom.	Expo.	Ev.	Bkgd.	Expo.	Ev.	Bkgd.
2e2p, h	0.15/0.96/0.94	13.58	10	10.66	6.12	6	4.75
2e2p, v	0.18/0.96/0.94	16.21	13	12.65	7.36	6	5.61
2e2p, d	0.19/0.96/0.93	17.82	32	25.31	7.65	18	11.22
2e, all	0.51/0.96/0.94	46.61	55	48.62	21.13	30	21.57
3e2p	0.33/0.98/0.96	30.87	3	0.01	14.01	2	0.01
3e3p	0.31/0.94/0.90	26.84	1	0.06	12.21	0	0.03
3e, all	0.64/0.96/0.93	57.71	4	0.07	26.22	2	0.03
4e2p	0.21/0.98/0.96	19.51	0	0.00	8.85	0	0.00
4e3p	0.31/0.96/0.92	27.60	0	0.00	12.55	0	0.00
4e4p	0.19/0.93/0.88	15.93	0	0.00	7.25	0	0.00
4e, all	0.71/0.96/0.92	63.03	0	0.00	28.66	0	0.00
5e, all	0.75/0.95/0.91	65.56	0	0.00	29.84	0	0.00
6e, all	0.78/0.95/0.90	67.31	0	0.00	30.63	0	0.00
7e, all	0.80/0.95/0.89	68.53	0	0.00	31.19	0	0.00
8e, all	0.82/0.95/0.89	69.52	0	0.00	31.67	0	0.00
9e, all	0.84/0.94/0.88	70.30	0	0.00	32.02	0	0.00
10e, all	0.85/0.94/0.88	70.89	0	0.00	32.30	0	0.00

Perspectives light-DM with skippers

Greensei

Perspectives light-DM with skippers

Perspectives light-DM with skippers

Perspectives light-DM with skippers

DARKNESS 2g in space

Summary

- New 1e- rate record of (1.4 ± 0.1) x10-5 e-/pix/day
- Limit with **MINOS** data for **mCP. Best constraints** around 100 MeV.
- Best constraints from SNOLAB on DM-e- direct scattering for light mediator (1-1000 MeV), heavy mediator/Migdal around (1-10 MeV), and Absorption (1-10 eV)

- Unbinned data with different exposures to study 2,
 3, 4 e- channels with improved analysis coming
- Strategies to further push background foreseen: different form factor, package, IR shield, etc
- Renewed support from H-S and new cryocooler
- generations of skipper-CCD experiments foreseen for cosmic DM searches in the next ~ 7 years
- New efforts to build particle trackers at beams for mCPs and satellites for SIMPs

SENSEI @ SNOLAB: First results

- 45 unblinded commissioning images,
- 37 blinded images
- 2-10 e- channels
- Combined datasets: ~70 g-days per electron channel with cuts
- Three limits: blinded dataset, commissioning dataset, and combined commissioning + blinded exposure

- Signal model: expected DM events per electron channel with QEdark, PhystatDM (arxiv:2105.00599f) and ionization model (arxiv:2004.10709)
- Split each electron channel into bins based on geometry
- Effective exposure with Monte Carlo given masks and charge diffusion
- Calculate expected coincidence background in each bin given measured 1e- density
- Limit: combined likelihood over all bins to set 90% C.L. upper limits

‡Fermilab Øensei

Summary: from prototype to science grade

Active mass ~ **0.1 g 0.019 gram-day** exposure 0.14 e- RO noise (**800** samples) SEE ~ **1.14 e-/pixel/day**

Active mass ~ **0.1 g 0.069 gram-day** exposure 0.14 e- RO noise (**800** samples) SEE ~ **0.005 e-/pix/day** Active mass ~ 2 g 19.926 gram-day exposure 0.14 e- RO noise (300 samples) SEE ~ 1.6x10⁻⁴ e-/pix/day

Background sources: detector

Exposure dependent

- Dark current (10⁻⁵ e /pix/day at 135 K)
- Amplifier light (10⁻¹ to 10⁻⁵ e⁻/pix/day)

Exposure independent

· Spurious charge (10^{-2} to 10^{-5} e⁻/pix/image)

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- · Voltage configuration
- · Amplifier off while exposure

The SENSEI Collaboration. Phys. Rev. Applied 17, 014022 (2022)

Background sources: environment

High-energy:

- · Air shower muons
- · Nuclear decays
- · x/ɣ-rays

Low-energy:

- · IR photons
- · Halo and transfer inefficiency
- · Compton scattering
- \cdot Charge collection inefficiency

Environmental background is reduced with shielding, and removed from data with quality cuts

The SENSEI Collaboration - Phys. Rev. Lett. 125, 171802 (2020)

Background goal

Skipper-CCD read-out noise

Skipper-CCD resolution

(Almost) Empty CCD

Front-illuminated CCD

Skipper-CCD for photo detection

Charge per event for 55Fe x-ray source

Compton scattering spectrum in Silicon with 241Am γ-ray source

CCD read-out noise

Traditional **CCD: charge** transferred to sense node and read **once**

Pedestal and **signal** integration reduces **high-frequency** noise.

But not low frequency...

Skipper CCD read-out

Multiple sampling of same pixel without corrupting the **charge** packet.

Pixel value = **average** of all samples

Suggested in **1990** by Janesick et al. (doi:10.1117/12.19452)

Skipper CCD read-out

1. **pedestal** integration.

- 2. **signal** integration.
- 3. charge = signal pedestal.
- 4. **Repeat** N times.
- 5. Average all samples.

Then, the low-frequency noise is reduced

Background sources: environment

High-energy:

- \cdot Air shower muons
- · Nuclear decay neutrons
- · x/ɣ-rays

Low-energy:

- · IR photons
- \cdot Halo and transfer inefficiency
- \cdot Compton scattering
- \cdot Charge collection inefficiency

Shielding and quality cuts to remove environmental background.

The SENSEI Collaboration - Phys. Rev. Lett. 125, 171802 (2020)

Background sources: detector

Exposure independent

- Spurious charge (10^{-2} to 10^{-5} e⁻/pix/image)
- Amplifier light (10^{-1} to 10^{-5} e-/pix/day)

Exposure dependent

 \cdot Dark current (10⁻⁵ e⁻/pix/day at 135 K)

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- · Voltage configuration
- · Amplifier off while exposure
- · Temperature control

The SENSEI Collaboration. Phys. Rev. Applied 17, 014022 (2022)

Greenseiner

SENSEI @ SNOLAB: quality cuts

Blinded analysis

- 1. Choose 1 Golden quadrant
- 2. Quality cuts with commissioning data:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Hot image (3-sigma upper cut)
 - Noisy image (refit after masking)
 - Serial register events
 - Charge transfer inefficiencies
 - High-energy events halo

System / detector effects

Environmental background

3. Choose **2 Witness** quadrants to assess cryocooler effect in hidden data

SENSEI @ MINOS: light-leak test setup

- Same CCDs as in SNOLAB
- 1 Cold copper tray with 2 CCDs
- No cold box around tray
- 6 hs exposure with **LED on**
- No cold box around tray
- Run 1 with old tray
- Run 2 with **new tray** and extra tape
- Run with 0, 2 and 6 hs exposure
- Same operation parameters and quality cuts as in SNOLAB

Gensei

SENSEI @ MINOS: light-leak test result

- Best previous result :
 - ~8 x 10⁻⁵ e-/pix/day (not published)
- New best result:
 - (3.4 ± 0.1) x 10⁻⁵ e-/pix/day
- Improvement of factor 2 with light-tight tray

Exposure-dependant rates in x 10⁻⁵ e-/pix/day

CCD-1	$\begin{array}{c} 3.43 \pm 0.13 \\ 7.79 \pm 0.21 \end{array}$	4.27 ± 0.14 7.38 ± 0.22
CCD-2	$\begin{vmatrix} 9.04 \pm 0.27 \\ 6.47 \pm 0.19 \end{vmatrix}$	4.10 ± 0.16 7.14 ± 0.25

