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Data-driven identification of electoluminescence signals from low-enerqgy
nuclear recoils in a LAr TPC using self-supervised machine learning
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| Hunting for low-energy nuclear recoils |
{ o The Recoil Directionality (ReD) experiment, within the Global Argon Dark Matter Collaboration (GADMC), aims to study the low energy region (2-5 keV) for nuclear recoils using 3

neutrons from a 25%2Cf source and directed toward a dual-phase argon Time Projection Chamber (LAr TPC) [1] (see talk by L. Pandola)

o Due to the low energy deposited in the recoil, the only detectable signal is the electroluminescence light in gas (52) from ionization electrons extracted in the gas phase after being
{ drifted by a 200 V/cm field in liquid

' The readout system is made of Silicon Photomultipliers (S1IPM) on two tiles placed on the top and bottom parts of the TPC

o The TPC is acquired in slave — S2-only signals are searched offline in candidates neutron events

¢ © The pulse finder is tested with Monte Carlo simulation and it is full efficient for S2 > 4 €~ (~80 PE) sy i MOTIVATION

Is there a way to lower the threshold for signal detection?
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o A data-driven analysis is developed training Convolutional AutoEncoders (CAE) to identify on S2-only events collected in the TPC

o An autoencoder is a neural network that can learn to encode the input data into a lower-dimensional representation, the Latent Space, and then decode it back to the original input: :
this neural network is composed by an encoder part and a decoder part, generally with symmetrical architecture [2] |

— autoencoders result particularly suited to finding anomalies [3] or removing noise [4] _f;
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The model The CAE-based method
? 1. Data 1. Study of the Latent Space |
| o Averaged raw waveforms (wf) have been used: i o A 4-dimensional latent space allows direct study of the compressed representation,
- S1PMs on the top tile above the TPC anode optical window are read individually, i labeled as 7
waveforms are calibrated accordingly to single electron response o In each z; distribution: _
- Calibrated wif are summed together and smoothed 10° 5 —clie= o accumulation around a non-zero value §
small peak (< 0. .
o Pre-processing: g v . . i
- Removal of wif with unstable pedestals 3 o 3 regions corresponding .t{) the i
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maximum value in the waveform),
the closer the z; parameter is to the \
accumulation value
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2. Training procedure on (7  [5]
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o Training (+validation) set: ~7000 wf from y-ray accidentals with a candidate single ! -' - -

S2 pulse, 20% of these wf are used for validation after each epoch 2. The criterion

| o Model implemented using Keras [6] with Tensorflow [7] backend: 3 Convolutional 1D + 3 | o 3:;%?:;2‘;?2:1? point estimated as the median of the distribution for only traces

Average Pooling layers, Relu as activation function, Mean Squared Error (MSE) loss |
times number of time-bins
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o 20 range around the median, since a small signal could be found in the 2.5% of each

i1 , , tail of the distribution
o Competitive training procedure between models initialized and trained with 1
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i  different random seeds: only the weights of the model with the lowest validation {f o Discard the "no signal” traces within the locus in the Latent Space where all the z;fall |
i loss are saved in the defined range around the median |
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